

Ψ U -V400w - SOLAR I-Ww I-V500w - SOLAR I-Ve Manual de instrucciones

Índice:		
1. PRI	ECAUCIONES Y MEDIDAS DE SEGURIDAD	.3
1.1.	Instrucciones preliminares	. 3
1.2.	Durante el uso	. 4
1.3.	Después del uso	. 4
1.4.	Definición de categoria de medida (Sobretensión)	.4
2. DE	SCRIPCIUN GENERAL	.5
2.1. 2.2	Introduccion	. כ ג
2.2. 3 DDI		. 5 6
3. 71	Controles iniciales	.0
3.2	Alimentación del instrumento	.0
3.3.	Almacenamiento	. 6
4. NO	MENCLATURA	.7
4.1.	Descripción del instrumento	. 7
4.2.	Descripción del teclado	. 8
4.3.	Descripción del visualizador	. 8
4.4.	Pantalla inicial	. 8
5. ME	NU GENERAL	.9
5.1.	SET – Configuración del instrumento	. 9
5.1.1	1. General	.9
5.1.2	2. Unidad de medida	10
5.1.4	4 Unidad Remota/Solarímetro	11
5.1.5	5. Irradiación	12
5.1.6	6. Pinza CC (SOLAR I-Vw, SOLAR I-Ve)	12
5.2.	EFF – Configuración de conexión FV Monofásicas (SOLAR I-Vw, SOLAR I-Ve)	13
5.2.1	1. Configuración para Instalaciones FV Mono MPPT - Salida CA monofásica	13
5. 5	2.1.1. Configuración Instrumento	13
5.2.2	2. Configuración para Inst. FV Mono/Multi MPPT - Salida CA mono/trifásico	15
5.	2.2.1. Configuración Instrumento	15
5.	2.2.2. Parámetros Instalación	16
5.2.3	Selección de la relación de compensación de los efectos de la Temperatura	18
5.3.	BD – Gestión base de datos de los módulos	19
5.3.1	1. Definición de un nuevo módulo FV	20
5.3.2	2. Modificar un módulo FV existente	21
5.3.3	Borrar un módulo FV existente	21
6. INS		22
6.1. 6.1.	Conexionado de Instalaciones FV (SOLAR I-VW, SOLAR I-Ve)	22
612	Conexión Instalación EV Mono/Multi MPPT - Salida CA mono/trifásica	23
6.2.	Medida de la curva I-V	33
6.2.1	1. Curva I-V con medida Irr/Temp efectuada directamente desde el instrumento	33
6.2.2	2. Curva I-V con medida Irr/Temp efectuada a través de la unidad SOLAR-02	37
6.	2.2.1. Obtención curva I-V a través unidad SOLAR-02 en conexión RF	37
623	2.2.2. Curva i-v a traves de la unidad SOLAR-02 en registro simultaneo	41
6.3.	Test rápido módulos v stringas fy (IVCK)	47
6.3.1	1. Generalidades	47
6.3.2	2. Configuraciones preliminares	48
6.3.3	 Test Rápido IVCK sin medida de Irradiación Test Rápido IVCK con medida de Irradiación 	49
6.3.4 6 2 4	+. I ESL RAPIDO IVUK CON MEDIDA DE IMADIACION	51 52
64	l istado de los mensaies sobre el visualizador	54
7 CO		55
7 1	Guardado de las medidas del conexionado FV (SOLAR I-Vw SOLAR I-Ve)	55
7.2.	Guardado de las medidas de curva I-V.	55

7.3.	Operación con resultados	
7.3.1	Rellamada de los resultados de pruebas FV (SOLAR I-Vw, SOLAR I-Ve)	
7.3.2	2. Rellamada de los resultados de medida característica I-V	57
7.3	3.2.1. Acceso a los datos guardados en memoria – Visualización numérica	58
7.	3.2.2. Acceso a datos guardados en memoria – Visualización gráfica curva I-V	
7.3	3.2.3. Acceso a datos guardados en memoria – Visualización gráfica potencia	
		01 60
0. 001	Canavián a través del aphla ántica (USD C2006	02
8.1.	Conexion a traves del cable optico/USB C2006	
8.2.		
9. MAI		
9.1.	Generalidades	
9.2.	Sustitución de las pilas	
9.3.	Limpleza del instrumento	
9.4.	Fin de vida	
10. ESF	PECIFICACIONES TECNICAS	65
10.1.	Características conexión instaciones FV (SOLAR I-Vw, SOLAR I-Ve)	65
10.2.	Características técnicas medida curva I-V y IVCK	67
10.3.	Normas de seguridad	
10.3	.1. Generalidades	68
10.4.	Características generales	69
10.5.	Condiciones ambientales de uso	69
10.6.	Accesorios	
11. APE	ENDICE – FICHAS TEORICAS	70
11.1.	Conexionado de las instalaciones FV (SOLAR I-Vw, SOLAR I-Ve)	
11.2.	Breves notas sobre MPPT (Maximum Power Point Tracker)	71
11.3.	Medida de la curva I-V	72
11.3	.1. Errores habituales sobre las curvas I-V y posibles soluciones	73
12. ASI	STENCIA	75
12.1.	Condiciones de garantía	75
12.2.	Asistencia	75

1. PRECAUCIONES Y MEDIDAS DE SEGURIDAD

En el siguiente manual la palabra "instrumento" se entiende genéricamente los modelos I-V400w, I-V500w, SOLAR I-Vw y SOLAR I-Ve salvo anotación específica indicada.

El instrumento ha sido proyectado en conformidad a las directivas IEC/EN61010-1 relativas a los instrumentos de medida electrónicos. Antes y durante la ejecución de las medidas atenerse escrupulosamente a las siguientes indicaciones y lea con particular atención todas las notas precedidas por el símbolo Δ .

- No efectúe medidas en ambientes húmedos
- No efectúe medidas en ambientes con presencia de gas o materiales explosivos, combustibles o en ambientes polvorientos.
- Evite el contacto con el circuito en examen si se está efectuando medidas.
- Evite el contacto con partes metálicas desnudas, con terminales de medida inutilizados, circuitos, etc.
- No efectúe alguna medida si existe alguna anomalía en el instrumento como, deformaciones, roturas, pérdidas de sustancias, ausencia de símbolos en el visualizador, etc.
- Utilice sólo los accesorios originales HT

En el presente manual son utilizados los siguientes símbolos:

Atención: fíjese en las instrucciones reflejadas en el manual; un uso impropio podría causar daños al instrumento y a sus componentes

Peligro Alta Tensión: riesgo de shock eléctrico.

Doble Aislamiento

Tensión o corriente CC

Tensión o corriente CA

Referencia de tierra

1.1.INSTRUCCIONES PRELIMINARES

- Este instrumento ha sido fabricado para el uso en condiciones ambientales específicas en el § 10.5.
- No opere en condiciones ambientales diferentes.
- El instrumento puede ser utilizado para medidas de TENSION y CORRIENTE en CAT II 1000V CC o CAT III 300V respecto tierra, máxima tensión 1000VDC (I-V400w y SOLAR I-Vw) o 1500VDC (I-V500w y SOLAR I-Ve) No opere sobre los circuitos que superen los límites especificados en el § 10.1 y § 10.2
- El invitamos a seguir las normales reglas de seguridad orientadas a proteger contra corrientes peligrosas y proteger al instrumento contra un uso erróneo.
- Sólo los accesorios incluidos en dotación del instrumento garantizan los estándares de seguridad. Deben estar en buenas condiciones y sustituirlos, si es necesario, por modelos idénticos.
- Controle que las pilas estén insertadas correctamente
- Antes de conectar los cables de medida al circuito en examen, controle que se ha seleccionado la función deseada.

1.2. DURANTE EL USO

Le rogamos que lea atentamente las recomendaciones y las instrucciones siguientes:

- ATENCIÓN
 La falta de observación de las Advertencias y/o Instrucciones pueden dañar el instrumento y/o sus componentes o ser fuente de peligro para el usuario
 El símbolo " indica el nivel de carga completa de las pilas. Cuando el nivel de carga desciende a niveles mínimos el símbolo " es mostrado sobre el visualizador. En este caso interrumpa las pruebas y
- proceda a la sustitución de las pilas en acuerdo a lo descrito en § 9.2
 El instrumento mantiene los datos memorizados incluso sin pilas

1.3. DESPUÉS DEL USO

Cuando las medidas han finalizado, apague el instrumento a través del botón ON/OFF durante unos segundos. Si prevé no utilizar el instrumento durante un largo período de tiempo quite las pilas y aténgase a lo especificado en el § 3.3.

1.4. DEFINICIÓN DE CATEGORÍA DE MEDIDA (SOBRETENSIÓN)

La norma EN61010-1: Prescripciones de seguridad para aparatos eléctricos de medida, control y para uso en laboratorio, Parte 1: Prescripciones generales, definición de categoría de medida, comúnmente llamada categoría de sobretensión. En el § 6.7.4: Circuitos de medida, indica:

Los circuitos están subdivididos en las siguientes categorías de medida:

 La Categoría IV de medida sirve para las medidas efectuadas sobre una fuente de una instalación de baja tensión
 Ejemplo: contadores eléctricos y de medidas sobre dispositivos primarios de protección de las sobrecorrientes y sobre la unidad de regulación de la ondulación.

 La Categoría III de medida sirve para las medidas efectuadas en instalaciones interiores de edificios
 Ejemplo: medida sobre módulos de distribución, disyuntores, cableados, incluidos los cables, los embarrados, los interruptores, las tomas de instalaciones fijas y los aparatos destinados al uso industrial y otros instrumentación, por ejemplo los motores

fijos con conexionado a instalación fija

- La **Categoría II de medida** sirve para las medidas efectuadas sobre circuitos conectados directamente a las instalaciones de baja tensión. *Ejemplo: medidas sobre instrumentación para uso doméstico, utensilios portátiles e instrumentación similar*
- La Categoría I de medida sirve para las medidas efectuadas sobre circuitos no conectados directamente a la RED DE DISTRIBUCIÓN.
 Ejemplo: medidas sobre no derivados de la RED y derivados de la RED pero con protección particular (interna). En este último caso las necesidades de transitorios son variables, por este motivo (OMISSIS) se requiere que el usuario

2. DESCRIPCIÓN GENERAL

2.1. INTRODUCCIÓN

El instrumento ha sido fabricado para la ejecución de las pruebas sobre las características I-V en los módulos/stringhe fotovoltaicos (FV) con el fin de verificar los parámetros de referencia declaradas por el constructor y (SOLAR I-Vw, SOLAR I-Ve) para la realización de las operaciones de conexionado sobre instalaciones FV **Monofásicas** (y trifásico a través del accesorio opcional MPP300).

2.2. FUNCIONALIDAD DEL INSTRUMENTO

Conexionado sobre instalaciones FV Monofásica (EFF) (SOLAR I-Vw, SOLAR I-Ve)

- Medida tensión y corriente CC (1000V para SOLAR I-Vw, 1500V para SOLARA I-Ve)
- Medida tensión y corriente CA TRMS y medida potencia CC/CA
- Medida irradiación [W/m²] a través de la célula de ref. conectada a la unidad SOLAR-02
- Medida temperatura módulos y ambiental a través sonda conectada al SOLAR-02
- Aplicación de las relaciones de compensación de la Eficiencia CC
- Valoración inmediata resultado OK/NO de una conexión
- Registro parámetros de una instalación FV con PI programable desde 5s a 60min

Conexión instalaciones FV Mono/Trifásico (MPP – SOLAR I-Vw, SOLAR I-Ve + MPP300)

- Medida 3 tensiones y corriente CC y medida potencia string CC y total CC
- Medida 3 tensiones y corrientes CA TRMS y medida potencia total CA
- Medida irradiación [W/m²] a través de célula de referencia conectada a unidad SOLAR-02
- Medida temp. módulos y ambiente a través de sonda conectada a SOLAR-02
- Aplicación de la relación de compensación de la Eficiencia CC
- Valoración inmediata resultado OK/NO de una conexión
- Registro parámetros de una instalación FV con PI programable desde 5s a 60min

Medida característica Corriente-Tensión (I-V)

- Tensión/ corriente /potencia del módulo/stringa 1000V CC, 15ACC (SOLAR I-Vw, I-V400w)
- I-V/potencia modulo/stringa 1500VCC-10ACC o 1000VCC-15ACC (SOLAR I-Ve, I-V500w)
- Activación de la medida en modo Manual y Automático
- Medida de la temperatura del módulo/grupo módulos
- Medida de la irradiación [W/m²] a través célula de referencia.
- Valoración del ángulo de incidencia solar con inclinómetro mecánico
- Visualización numérica y gráfica de la característica I-V con medida a 4 hilos
- Comparación directa con las condiciones de referencia (STC) y resultado OK / NO
- Base de datos interna personalizable para la gestión de hasta 30 módulos FV
- Valoración de la degradación anual de módulos/strings/campos FV
- Memoria interna para guardado de datos e interfaz óptica/USB para transf. de datos al PC
- Interfaz óptica/USB para transferir datos a PC

Medidas rápidas de pre-conexionado (IVCK)

- Medidas rápidas de tensión en vacío y corriente de cortocircuito FV hasta 1000VCC, 15A (SOLAR I-Vw, I-V400w) y hasta 1500VCC, 15ACC (SOLAR I-Ve, I-V500w)
- Attivazione misura in modo Manuale e Automatico
- Evaluación inmediata (OK/NO) de los resultados obtenidos

El instrumento dispone de la función de retroiluminación del visualizador, la posibilidad de regulación interna del contraste y una tecla **AYUDA** con el fin de incluir una ayuda al usuario en el conexionado del instrumento en su instalación. La función de autoapagado, eventualmente desactivable, se activa a partir de aprox. 5 minutos sin uso en el instrumento.

3. PREPARACIÓN PARA EL USO

3.1. CONTROLES INICIALES

El instrumento, antes de ser expedido, ha sido controlado desde el punto de vista eléctrico y mecánico. Han sido tomadas todas las precauciones posibles para que el instrumento pueda ser entregado sin ningún daño. De todas formas se aconseja controlar exhaustivamente el instrumento para comprobar que no haya sufrido daños durante el transporte. Si se detecta alguna anomalía contacte inmediatamente con el Distribuidor.

Se aconseja además de controlar que el embalaje contenga todas las partes indicadas en el § 10.6. En caso de discrepancias contacte con el distribuidor. En caso de que fuera necesario devolver el instrumento, se ruega seguir las instrucciones indicadas en el § 12

3.2. ALIMENTACIÓN DEL INSTRUMENTO

El instrumento está alimentado con pilas. Para modelo y autonomía de las pilas ver § 10.4.

El símbolo "**La pilas** "indica el nivel de carga completo de las pilas internas. Cuando el nivel de carga desciende a un nivel mínimo el símbolo "**La p**" es mostrado en el visualizador. En estos casos interrumpa las medidas y proceda a la sustitución de las pilas en acuerdo a lo descrito en el § 9.2.

El instrumento mantiene los datos memorizados incluso sin pilas

El instrumento dispone de sofisticados algoritmos para aumentar al máximo la autonomía de las pilas. En particular:

Una breve pulsación de la tecla 🌋 activa la retroiluminación del visualizador. Con el fin de salvaguardar la eficiencia de las pilas la retroiluminación se apagará automáticamente después de aproximadamente 30 segundos.

El uso sistemático de la retroiluminación disminuye la autonomía de las pilas.

3.3. ALMACENAMIENTO

Para garantizar medidas precisas, después de un largo período de almacenamiento en condiciones ambientales extremas, espere que el instrumento vuelva a las condiciones normales (vea el § 10.5)

4. NOMENCLATURA

4.1. DESCRIPCIÓN DEL INSTRUMENTO

Fig. 1: Descripción parte frontal del instrumento

LEYENDA:

- Entrada para sonda medida irradiación (I-V) / pinza de corriente CC (EFF - SOLAR I-Vw, SOLAR I-Ve)
- Entrada para sonda medida temperatura auxiliar (I-V) / pinza para corriente CA (EFF - SOLAR I-Vw, SOLAR I-Ve)
- Entradas C1, C2 para medida corriente (I-V) / medida tensión CC (EFF - SOLAR I-Vw, SOLAR I-Ve)
- Entradas P1, P2 para medidas tensión (I-V) / tensión CA (EFF -SOLAR I-Vw, SOLAR I-Ve)

1. Conector para el conexionado cable de salida optoaislada óptico/USB

Fig. 3: Descripción parte lateral del instrumento

SOLAR

I-Vw

нт

RF-Wi SN:15345678

FW: 7.07 H4

Fecha calibración:

09/02/2016

4.2. DESCRIPCIÓN DEL TECLADO

El teclado es constituido por las siguientes teclas:

Tecla **ON/OFF** para encender y apagar el instrumento

Tecla **ESC/MENU** para salir de la pantalla corriente sin confirmar las modificaciones y volver al menú principal

Teclas $\blacktriangleleft \triangleright \lor$ para desplazar el cursor en el interior de las distintas pantalla al fin de seleccionar los parámetros de programación

Tecla **ENTER** para confirmar las modificaciones, los parámetros de programación seleccionados y para seleccionar en el menú la función a la cual acceder

Tecla GO/STOP para iniciar la medición

Tecla **SAVE** para guardar la medida

Tecla **HELP** (pulsación prolongada) para acceder a la ayuda en línea visualizando las posibles conexiones entre el instrumento en un instalación. Tecla **(pulsación simple)** para activar la retroiluminación del visualizador.

4.3. DESCRIPCIÓN DEL VISUALIZADOR

El visualizador es un módulo gráfico con una resolución 128	15/05/10 15:34	:26	
x 128 puntos. En la primera línea del visualizador indica			
fecha/hora de sistema y el indicador del estado de las pilas.			
En la parte baja es indicada la funcionalidad de la Tecla			
ENTER y la modalidad activa.			
El símbolo Linh indica la presencia de una conexión radio			
activa con la unidad remota seleccionada (SOLAR-02 o			
MPP300).	Módulo: SUNPO	WER 210	
El símbolo Imil intermitente indica la búsqueda en curso de			
una conexión radio con la unidad remota seleccionada	Selección	I – V	Tuij
(SOLAR-02 o MPP300).			

4.4. PANTALLA INICIAL

Al encender el instrumento será visualizada durante unos segundos la pantalla inicial. En ella serán visualizadas:

- El modelo del instrumento
- El fabricante.
- Presencia del módulo interno de comunicación radio activado y del módulo WiFi
- El número de serie del instrumento (NS:).
- La versión de firmware presente en la memoria del instrumento (FW:).
- La fecha de la última calibración del instrumento (Fecha calibración:).

Después de unos segundos el instrumento pasará a la última función seleccionada.

5. MENU GENERAL

La pulsación de la tecla **ESC/MENU**, en cualquier condición que se encuentre el instrumento, provoca la aparición de la pantalla a través de la cual es posible configurar el instrumento, visualizar las medidas memorizadas, y seleccionar la medición deseada (la función EFF aparece sólo para el instrumento SOLAR I-Vw, SOLAR I-Ve).

Seleccionando con el cursor una de las opciones y confirmando con **ENTER** se accede a la función deseada

01/07/	10 15:34:26		
I - V	Caract. I-V		
EFF	EFF Conexión		
SET Configuración			
BD	Módulos		
MEM	MEM Datos memoria		
PC Conex. con PC			
ENTER para selec			
	MENU		

5.1. SET – CONFIGURACIÓN DEL INSTRUMENTO

Posicione el cursor sobre la función **SET** utilizando las teclas flecha (\blacktriangle , \triangledown) y confirme con **ENTER**. En el visualizador aparece la pantalla que lista las distintas configuraciones del instrumento.

Las configuraciones serán mantenidas incluso después del apagado del instrumento

	01/07/10 15:34:26		
•	General		
	Unidad de medida		
	Fecha Hora		
	Unidad Remota/Solarim.		
	Irradiación		
	Pinza CC		
	ENTER para selec.		
	CONFIG		

5.1.1. General

- 1. Posicione el cursor sobre la función **General** utilizando las 01/07/10 15:34:26 teclas flecha (▲,▼) y confirme con **ENTER**.
- 2. En el visualizador aparece la pantalla que permite:
 - > La configuración del idioma del instrumento
 - > La activación/desactivación del autoapagado
 - > La regulación del contraste del visualizador
 - La habilitación de la señal acústica en correspondencia de la pulsación de una tecla
 - La activación/desactivación de la interfaz WiFi en cada sección del menú general para la utilización del instrumento junto con la APP HTAnalysis (en la sección PC la interfaz WiFi está siempre activa). Con el WiFi activo el símbolo """ se muestra en la parte inferior derecha del visualizador. La activación de la interfaz WiFi implica un mayor consumo de las baterías
- Para la configuración del Idioma seleccione la función "Idioma" utilizando las teclas flecha (▲,▼) y seleccione la opción deseada usando las teclas flecha (◀, ►).
- 4. Pulse la tecla SAVE para guardar las configuraciones efectuadas y el mensaje "Datos memorizados" será mostrado por un instante. Pulse la tecla ESC/MENU para salir sin guardar y volver a la pantalla anterior

01/07/10	15.54.20)		
ldioma	:∢Esp	bañc		
Autoapa	agado	: N	0	
Contras	te	: 40)	
Sonido	teclas	: N	0	
WiFi		: NC	C	
			-	
SAVI	E para g	guar	dar	
		C	ONFIG	ì

5.1.2. Unidad de medida

Esta sección permite la configuración de la unidad de medida de algunos parámetros presentes en la gestión de la base de datos (BD) de los módulos FV (ver § 5.2) en la medida de la curva I-V

- 1. Posicione el cursor sobre la función "**Unidad de medida**" ^{01/} utilizando las teclas flecha (▲,▼) y confirme con ENTER.
- En el visualizador aparece la pantalla que permite la configuración de las unidades de medida de los parámetros medidos por el instrumento.
- 3. Para abandonar las modificaciones efectuadas pulse la tecla **ESC/MENU.**

01/07/10 15:34	4:26
Parámetros	
	_
ENTER p	oara selec.
	MENU

- Posicione el cursor sobre la función "Parámetros" utilizando las teclas flecha (▲,▼) y confirme con ENTER.
- 5. En el visualizador aparece la pantalla que permite la configuración de la unidad de medida de los siguientes parámetros típicos de los módulos:
 - Alfa → selección posible: "%/°C" y "mA/°C".
 - Beta → selección posible: "%/°C" y "mV/°C".
 - Gamma → selección posible: "%/°C" y "W/°C".
 - Tolerancia → selección posible: "%" y "W".
- Para la configuración de la unidad de medida use las teclas flecha (◀, ►)
- Pulse la tecla SAVE para guardar las configuraciones efectuadas y el mensaje "Datos memorizados" será mostrado durante un instante. Pulse la tecla ESC/MENU para salir sin guardar y volver a la pantalla anterior.

5.1.3. Fecha Hora

- 1. Posicione el cursor sobre la función "**Fecha Hora**" utilizando las teclas flecha (▲,▼) y confirme con **ENTER**
- En el visualizador aparece la pantalla que permite la configuración de la fecha/hora de sistema sea en el formato Europeo (EU) o en el formato USA (US).
- Para la configuración de la unidad de medida use las teclas flecha (◀, ►).
- 4. Pulse la tecla SAVE para guardar las configuraciones efectuadas y el mensaje "Datos memorizados" será mostrado durante un instante. Pulse la tecla ESC/MENU para salir sin guardar y volver a la pantalla anterior

ľ	01/07/10 15:34:26	
	Año :∢	2010 ►
а	Mes : 0	5
ł	Día : 1	5
	Hora : O	9
s	Minutos : 5 Formato : E	3 U
s		
á	SAVE para g	uardar
		CONFIG
_		

-WHT°

5.1.4. Unidad Remota/Solarímetro

Esta sección permite de seleccionar el tipo de unidad remota utilizada (si es disponible) y configurar los valores de los parámetros característicos (Sensibilidad y Alpha) de la célula solar de referencia incluida en dotación. Los valores de estos parámetros son mostrados sobre la etiqueta posterior de la misma célula en función del tipo de módulo MONOcristalino o MULTIcristalino

1.	Posicione el cursor sobre la función Solarímetro	01/07/10 15:34:26
	utilizando las teclas flecha (\blacktriangle , \triangledown) y confirme con ENTER .	Unidad r FFF MPP300
2.	En el visualizador aparece la pantalla que permite de:	Unidad r. I-V: : ∢ NO ►
•	(SOLAR I-Vw, SOLAR I-Ve) seleccione el tipo de unidad	Sens. :∢ 31.0 ▶ mV/kW/m2 Alpha :0.060 %/°C
	remota a utilizar para el conexionado de instalaciones FV :	
	 NO: Unidad remota deshabilitada 	
	 SOLAR: uso de SOLAR-02 	
	• MPP300: uso de MPP300 (opcional)	
•	habilitar/deshabilitar el uso de la unidad remota SOLAR-02	SAVE para guardar
	para la medida I-V (opc. para I-V400w, I-V500w). En el	CONFIG
	caso que no haya sido habilitada el uso de la U.remota	
	serà posible configurar los valores de la Sensibilidad	
	(Sens.) de la celula de referencia en dotación expresa en	
2	mv/kw ^m -2 y del parametro Alpha	
3.	temperatura a travéa da la unidad remota SOLAD 02	
	reaportivamento para la modelidad de prueba EEE (séla	
	SOLAR LVW SOLAR LVO V LV la configuración de la	
	Solar I-VW, Solar I-Ve) y I-V, la configuración de la	
	express on "mV/kW*m ⁻² " v del parámetro Alpha (sólo si la	
	unidad remota es desbabilitada para medida L-V)	
4	Para la configuración de la unidad de medida use las	
••	teclas flecha (\triangleleft \blacktriangleright)	
5	Pulse la tecla SAVE para guardar las configuraciones	
0.	efectuadas y el mensaie "Datos memorizados" será	
	mostrado durante un instante. Pulse la tecla ESC/MENU	
	para salir sin guardar v volver a la pantalla anterior	

ATENCIÓN

Para la medida de tipo EFF (conexión instalación FV – sólo SOLAR I-Vw, SOLAR I-Ve), la deshabilitación de la unidad remota **comporta:**

La imposibilidad de efectuar medidas de Irradiación y Temperatura a través de la unidad SOLAR-02

La imposibilidad de uso de la unidad MPP300 (si es disponible) Consecuentemente será imposible obtener un resultado cercano al conexionado efectuado.

5.1.5. Irradiación

Esta sección permite la configuración del umbral mínima de irradiación sea para la medida de la característica I-V sea para el conexionado de una instalación FV (SOLAR I-Vw, SOLAR I-Ve)

- 1. Posicione el cursor sobre la función "Irradiación" 01/07/10 15:34:26 utilizando las teclas flechas (▲, ▼) y confirme con ENTER
- 2. En el visualizador aparece la pantalla con las funciones "Irr min IV", que permite la configuración del umbral mínimo de irradiación expresado en W/m², utilizado como referencia del instrumento en la ejecución de las medidas de curva I-V y "Irr min EFF" (SOLAR I-Vw, SOLAR I-Ve) que permite la configuración del umbral mínimo de irradiación expresado en W/m², utilizado como referencia del instrumento en la ejecución de las medidas de curva I-V y "Irr min EFF" (SOLAR I-Vw, SOLAR I-Ve) que permite la configuración del umbral mínimo de irradiación expresado en W/m², utilizado como referencia del instrumento en la ejecución de las medidas de conexionado de instalaciones FV. Utilice las teclas (▲,▼) para pasar entre funciones

- Para la configuración del umbral mínimo de irradiación utilice las teclas flechas (◀, ►). Para obtener resultados de precisión conforme a lo indicado en el presente manual se recomienda de atenerse a las indicaciones del § 10.1. En la medida de curva I-V el valor es configurable entre 0 ÷ 800 W/m² y 400 ÷ 800 W/m² para las operaciones de conexión
- 4. Pulse la tecla **SAVE** para guardar las configuraciones efectuadas y el mensaje "Datos memorizados" será mostrado durante un instante. Pulse la tecla **ESC/MENU** para salir sin guardar y volver a la pantalla anterior.

Nota: la configuración "0 W/m2" para el parámetro "Irr min IV" permite la ejecución de las medidas I-V sin que sean controladas las siguientes condiciones:

- Conexión de la célula a la entrada IRR del instrumento.
- Valores inestables de irradiación
- Número módulos coherente con la tensión en vacio medida.

5.1.6. Pinza CC (SOLAR I-Vw, SOLAR I-Ve)

Esta opción permite configurar **el eventual** factor correctivo K para la pinza CC con el fin de mejorar la medida de la corriente. Es presente, el factor correctivo se indica sobre la etiqueta posterior de la misma pinza indicada como:

En el caso que no fuese presente ninguna etiqueta configure k = 1.000

- 1. Posicione el cursor sobre la función **Pinza CC** utilizando 01/07/10 15:34:26 las teclas flecha (▲, ▼) y confirme con **ENTER**
- En el visualizador aparece la pantalla "K pinza CC" que permite la configuración del factor correctivo con un intervalo comprendido entre 0.950 y 1.050. Para la configuración de los valores utilice las teclas flecha (◀, ►)
- Pulse la tecla SAVE para guardar las configuraciones efectuadas y el mensaje "Datos memorizados" será mostrado durante un instante. Pulse la tecla ESC/MENU para salir sin guardar y volver a la pantalla anterior.

ndc

Selección

5.2. EFF – CONFIGURACIÓN DE CONEXIÓN FV MONOFÁSICAS (SOLAR I-VW, SOLAR I-VE)

La indicación con el acrónimo **MPPT** (Multiple Power Point Tracker) la característica del convertidor CC/CA (inversor) en grado de maximizar la potencia CC prelevable del campo fotovoltaico. Vea el § 11.2

5.2.1. Configuración para Instalaciones FV Mono MPPT - Salida CA monofásica

Controle preventivamente la configuración efectuada en **MENU→SET→Unidad Remota** y verifique de haber seleccionado "**SOLAR**" como configuración para el parámetro "**Unidad r.**"

5.2.1.1. Configuración Instrumento

- 1. Posicione el cursor sobre la función EFF utilizando las 01/07/10 15:34:26 teclas flecha (\blacktriangle , ∇) y confirme con **ENTER**. En el PRp visualizador aparece la siguiente pantalla con los valores Pnom 0.000 kW °C Τс de los parámetros eléctricos de salida del generador - - -°C Те - fotovoltaico (lado CC) Pdc 0.0 kW Vdc 0.000 V ldc А 0.0
- 2. Pulse la tecla ENTER. El instrumento muestra las 01/07/10 15:34:26 opciones: Par. Instalación e Par. Instrumento
- Utilice las teclas flecha (▲, ▼) para seleccionar la función "Par. Instrumento" y confirme con ENTER. El instrumento muestra la siguiente pantalla:

5	01/07/10	15.54.20	
ו	PRp Irr Pnom Tc Pdc Vdc Idc ndc Par . Insta	0.000 0.0 0.0 0.00 0.0 0.0	W/m2 kW °C °C kW V A
	Par.Insti	rum.	
	Selección		EFF

GO para Inicio

EFF

- 4. Utilizando las teclas flecha (◀, ►) es posible configurar:
 > El periodo de integración (IP) utilizable por el instrumento en la operación de conexionado de los parámetros de una instalación FV. Los valores 5s,
 - parámetros de una instalación FV. Los valores 5s, 10s, 30s, 60s, 120s, 300s, 600s, 900s, 1800s, 3600s son seleccionables
 > El FE de la pinza CC utilizada para la medida de
 - El FE de la pinza CC utilizada para la medida de corriente CC con valor seleccionable entre 1A ÷ 3000A
 - El FE de la pinza CA utilizada para la medida de corriente CA con valor seleccionable entre 1A ÷ 3000A
- Pulse la tecla SAVE para guardar las configuraciones efectuadas y el mensaje "Datos memorizados" será mostrado por un instante. Pulse la tecla ESC/MENU para salir sin guardar y volver a la pantalla anterior.

	01/07/10 15:34:26
L	
	IP :
5	FE Pinza CC : 1000 A
	FE Pinza CA : 1000 A
2	
è	
-	
	SAVE para quardar
2	
	EFF

5.2.1.2. Parámetros Instalación

 Posicione el cursor sobre la función EFF utilizando las teclas flecha (▲,▼) y confirme con ENTER. En el visualizador aparece la pantalla que muestra los valores de los parámetros eléctricos en salida del generador fotovoltaico (lado CC)

15/05/10	15:34:26	
PRp Irr Pnom Tc Te Pdc Vdc Idc ndc	0.000 0.000 0.000 0.000	W / m 2 k W ° C ° C k W V A
G	O para In	icio
Selección		EFF

- 2. Pulse la tecla ENTER. El instrumento muestra las 15 opciones: Par. Instal. y Par. Instrumento
- Utilice las teclas flecha (▲,▼) para seleccionar la función "Par. Instal." y confirme con ENTER. El instrumento muestra la siguiente pantalla:

15/05/10	15:34:26	
PRp Irr Pnom Tc Pdc Vdc Idc ndc Par.Insta	0.000 0.0 0.0 0.000 0.0 0.0	W/m2 kW °C °C kW V A
Conf.Ins	trumento	
Selección	EFF	

- 4. Usando las teclas flecha (◀ , ►) es posible configurar:
 - ➤ Pmax → potencia nominal máxima de la instalación FV expresada en kW
 - ➤ Gamma → coeficiente de variación de la potencia con la temperatura, parámetro característico de los módulos FV (típicamente en el rango: -0.3 ÷ -0.5%/C)
 - ➤ Noct → temperatura nominal de trabajo de la célula, parámetro característico de los módulos FV (típicamente en el rango: 42 ÷ 48°C)
 - ➤ Te, Tc → Configuración de los valores por defecto de la temperatura ambiental y de los módulos FV. Estos valores son considerados por el instrumento sólo en ausencia de la sonda auxiliar conectada a la unidad SOLAR-02
 - ➤ Tipo Corr. → Configuración de la relación de compensación sobre el cálculo de la potencia Pdc y de la maximización del rendimiento CC (ver § 5.2.2)

	01/07/10 15:34:26
1	Pmax : ◀ 3.500 ▶ kW Gamma : 0.45 %/°C Noct : 45 °C Te : 40 °C Tc : 45 °C Tipo Corr : 45 ^mb
, /	
è	SAVE para guardar EFF

-ŴHT°

5.2.2. Configuración para Inst. FV Mono/Multi MPPT - Salida CA mono/trifásico

En el Apéndice Teórico 0 para detalles acerca del significado de **MPPT**. Esta modalidad requiere el uso de la unidad remota **MPP300** (opcional). Controle preventivamente las configuraciones efectuadas en **MENU→SET→Unidad Remota** y verifique haber seleccionado el "**MPP300**" como configuración para el parámetro "**Unidad r.**"

5.2.2.1. Configuración Instrumento

 Posicione el cursor sobre la función EFF utilizando las teclas flecha (▲,▼) y confirme con ENTER. En el visualizador aparece la pantalla siguiente que indica los parámetros globales de la instalación.

- 2. Pulse la tecla ENTER. El instrumento muestra las 15/05/10 15:34:26 opciones: Estado MPP , Par. Instalación e Par. Instrumento
- Utilice las teclas flecha (▲,▼) para seleccionar la función "Par. Instrumento" y confirme con ENTER. El instrumento muestra la siguiente pantalla:

- 4. Utilizando las teclas flecha (◀, ►) es posible configurar:
 - El periodo de integración (IP) utilizable por el instrumento en la operación de conexionado de los parámetros de una instalación FV. Son seleccionables los valores 5s, 10s, 30s, 60s, 120s, 300s, 600s, 900s, 1800s, 3600s
 - El FE de la pinza CC utilizada para la medida de corriente CC con valor seleccionable entre 1A ÷ 3000A
 - El FE de la pinza CA utilizada para la medida de corriente CA con valor seleccionable entre 1A ÷ 3000A
 - El tipo de pinza CA utilizada: STD (estándar) o FLEX (pinza con toroidal flexible)
 - Èl número de entradas CC a utilizar para la medida: 1, 1+2, 1+2+3
 - > El tipo de sistema eléctrico CA: **MONO**, **4 hilos**
- 5. Pulse la tecla **SAVE** para guardar la configuración efectuada por el mensaje "Datos memorizados" será mostrado durante un instante. Pulse la tecla **ESC/MENU** para salir sin guardar y volver a la pantalla anterior

	15/05/10 15:34:26
I	
	TP : < 5 ≥ S
,	FE Pinza CC: 1000 A
;	FE Pinza CA: 1000 A
	Tipo Pinza: STD
,	Entradas CC 1+2+3
	Sistem CA 4 hilos
'	
7	
•	SAVE para guardar
	MPP

-WHT°

5.2.2.2. Parámetros Instalación

 Posicione el cursor sobre la función EFF utilizando las teclas flecha (▲,▼) y confirme con ENTER. En el visualizador aparece la siguiente pantalla que indica los parámetros globales de la instalación.

	15/05/10	15:34:26	
I	PRp		
•	Pnom	150.0	vv/m2 kW
	Tc Te		°C °C
	Pac Pac		к vv k W
	nac		
	G	O para in	icio
	Selección		EFF

- 2. Pulse la tecla ENTER. El instrumento muestra las dopciones: Estado MPP, Par. Instalación y Par.
- Utilice las teclas flecha (▲,▼) para seleccionar la función "Par. Instrumento" y confirme con ENTER. El instrumento muestra la siguiente pantalla:

15/05/10	15:34:26	
PRp Irr Pnom Tc Pdc Vdc Idc ndc Estado Par . Insta	0.000 0.000 0.000 0.000 0.0 0.0 0.0 0.0	W / m 2 k W ° C ° C k W V A
Par.Inst	rum.	
Selección		EFF

- 4. Utilizando las teclas flecha (◀, ►) es posible configurar:
 - ➤ Pmax → potencia nominal máxima de la instalación FV expresada en kW
 - ➢ Gamma → coeficiente de variación de la potencia con la temperatura, parámetro característico de los módulos FV (típicamente en el rango: -0.3 ÷ -0.5%/C)
 - ➤ Noct → temperatura nominal de trabajo de la célula parámetro característico de los módulos FV (típicamente en el rango: 42 ÷ 48°C)
 - ➤ Te, Tc → configuración de los valores por defecto de la temperatura del ambiente y de los módulos FV. Estos valores son considerados por el instrumento sólo en ausencia de la sonda conectada a la unidad SOLAR-02
 - ➤ Tipo Corr. → Configuración de la relación de compensación sobre el cálculo de la potencia Pcc y de la maximización del rendimiento CC (ver § 5.2.2)

	15/05/10 15:34:26
	Pmax : ◀ 3.500 ▶ kW Gamma : 0.45 %/°C Noct : 45 °C Te : 40 °C Tc : 45 °C
,	SAVE para guardar
	MPP

-ŴHT°

5.2.2.3. Estado MPP300

Cuando el SOLAR I-Vw, SOLAR I-Ve se encuentra en proximidad del MPP300 puede ser visualizado los parámetros generales de este último.

1. Posicione el cursor sobre la función EFF utilizando las 15/05/10 15:34:26 teclas flechas $(\blacktriangle, \triangledown)$ y confirme con **ENTER**. En el РRр - - visualizador aparece la siguiente pantalla que indica los Irr W/m2 150.0 Pnom kW parámetros globales de la instalación. Тс °C - - -Te Pdc - - -°Č - - k W - - -Рас k W ndc nac ▼

	GΟ	para	in	icio
Selecci	ón			EFF

2.	Pulsando la tecla ENTER. El instrumento muestra las opciones: Estado MPP , Par. Instalación y Par. Instrumento	15/05/10 15:34:26 Alimentación Batería	Bat En uso
3.	Utilice las teclas flecha (▲,▼) para seleccionar la función "Estado MPP300" y confirme con ENTER. El instrumento muestra la siguiente pantalla:	Carga Conexión Solar Versión SN 11010030 Estado MPP300 Par . Instalación Par .Instrum	99% SI 1.01
		Selección E F	F

5.2.3. Selección de la relación de compensación de los efectos de la Temperatura Esta opción permite seleccionar la relación a utilizar para efectuar la corrección de las medidas efectuadas en función de la Temperatura de los módulos. Son disponibles las siguientes modalidades de corrección:

- T.mod.: Cálculo del término Rfv2 en función de la Temp. de los módulos de acuerdo con la Guía CEI-82-25

- T.amb: Cálculo del término Rfv2 en función de la Temp. ambiente de acuerdo con la Guía CEI-82-25

- ndc: Corrección PRp mediante Temperatura de los módulos

ATENCIÓN

En el ámbito de las verificaciones de sistemas FV de acuerdo a lo prescrito por la guía Italiana CEI 82-25, es aconsejable adoptar la relación "T.amb"

Tipo Corr	Temperatura (Tcel)	Relación matemática	
T.mod.	Tcel=Tmodule_Medida	$\int 1 \qquad (se Tcel \le 40^{\circ}C)$	
T.amb.	$Tcel = \left(Tamb + \left(NOCT - 20\right) \times \frac{Irr}{800}\right)$	$Rfv2 = \begin{cases} 1 - (Tcel - 40) \times \frac{ \gamma }{100} & (se Tcel > 40^{\circ}C) \\ - \rightarrow \\ PRp = \frac{P_{ca}}{\left[Rfv2 \times \frac{G_p}{G_{STC}} \times P_n \right]} \end{cases}$	CEI 82-25
$\eta_{_{dc}}$	Tcel=Tmodule_Mœlida	$PRp = \frac{G_{STC}}{G_p} \times \left[1 + \frac{ \gamma }{100} \times \left(T_{cel} - 25\right)\right] \times \frac{P_{ca}}{P_n}$	

donde:

Símbolo	Descripción	U.medida
G_p	Irradiación medida sobre el plano de los módulos	$\left[W/m^{2} \right]$
G_{STC}	Irradiación en condiciones estándar = 1000	$\left[W/m^{2} \right]$
P_n	Potencia nominal = suma de las Pmax de los módulos FV que forman parte de la sección de la instalación en examen	[kW]
P_{ca}	Potencia en CA acumulada medida en la salida de/de los inverter que forman parte de la sección de la instalación en examen	[kW]
Rfv2	Coeficiente correctivo función de la Temperatura de las celdas FV (Tcel) medida o calculada de acuerdo con el tipo de relación de corrección seleccionada	
γ	Valor absoluto del coef. térmico de la Pmax de los módulos FV que forman parte de la sección de la instalación en examen.	[%/°C]
NOCT	(Normal Operating Cell Temperature) = Temperatura que alcanzan las celdas en condiciones de ref. (800W/m ² , 20°C, AM=1.5, vel. Aire =1m/s).	[%/°C]

Para posteriores detalles vea el § 11.1

5.3. BD – GESTIÓN BASE DE DATOS DE LOS MÓDULOS

El instrumento permite la definición **hasta 30 tipologías de módulos FV** además de una por DEFECTO (no modificable ni borrable) que puede ser utilizada como referencia cuando no se disponga de información sobre el tipo de módulo que disponemos.

Los parámetros, **referidos a 1 módulo** que pueden ser configurados en la definición **referida a 1** módulo son listados en la siguiente Tabla 1, junto a los rangos de medida, resolución y condiciones de validez:

Símbolo	Descripción	Rango	Resol.	Condiciones	
Nms	Numero módulos por grupo	1 ÷ 50	1		
Pmax	Potencia máxima nominal del módulo	50 ÷ 4800W	1W	$\left \frac{P_{\max} - V_{mpp} \cdot I_{mpp}}{P_{\max}}\right \le 0.01$	
Voc	Tensión en vacio	15.00 ÷ 99.99V 100.0 ÷ 320.0V	0.01V 0.1V	$Voc \ge Vmpp$	
Vmpp	Tensión en el punto de máxima potencia	15.00 ÷ 99.99V 100.0 ÷ 320.0V	0.01V 0.1V	$Voc \ge Vmpp$	
lsc	Corriente de cortocircuito	0.5 ÷ 15.00A	0.01A	$lsc \ge Impp$	
Impp	Corriente en el punto de máxima potencia	0.5 ÷ 15.00A	0.01A	$lsc \ge Impp$	
Toll	Tolerancia negativa para Pmax	0% ÷ 25.0%	0.1%	100*Tol ⁻ /Pnom< 25	
1011-	incluida por el fabricante del módulo	0 ÷ 99W	1	100 101/210115 25	
	Tolerancia positiva para Pmax incluida por el fabricante del módulo	0 ÷ 25%	0.1%	$100*Tol^{+}/Pnom< 25$	
TOIL+		0 ÷ 99W	1		
Alpha	Coeficiente de temperatura Isc	-0.100÷0.100%/°C	0.001%/°C	100*Alfo / loo < 0 1	
Арпа		-15.00 ÷ 15.00mA/°C	0.01mA/°C	100 Alla / ISC \geq 0.1	
Bota	Cooficiento de temporatura Vec	-0.99 ÷ -0.01%/°C	0.01%/°C	100*Poto//oo < 0.000	
Dela	Coeliciente de temperatura voc	-0.999 ÷ -0.001V/°C	0.001V/°C	$100^{\circ}Bela/VOC \le 0.999$	
Gamma	Coeficiente de temperatura Pmax	-0.99 ÷ -0.01%/°C	0.01%/°C		
NOCT	Temperatura nominal de trabajo de la célula	0 ÷ 100°C	1°C		
Tech	Efectos debidos a la tecnología de módulos	STD (standard), CAP (ef.cap.) HIT (híbrido tecn.)			
Degr	Degradación porcentual prestaciones/año	0.0 ÷ 25.0%/yr	0.1%/yr		

Tabla 1: Parámetros asociados de un módulo FV

ATENCIÓN

El menu "Tech" se refiere a la elección de la tecnología de módulo bajo prueba. Seleccione la opción "STD" si las pruebas de los módulos fotovoltaicos de tipo "ESTÁNDAR", el "CAP" en el caso de los módulos fotovoltaicos con importantes efectos capacitivos o "HIT" (móduos con tecnologia híbrida HIT/HIP)

- Elegir el tipo incorrecto de la tecnología puede llevar a un resultado negativo de la prueba final
- El parámetro "Degr." representa la degradación de prestaciones en potencia de un módulo/string/campo FV en términos de porcentual anual (límite máximo configurable = 25%)

5.3.1. Definición de un nuevo módulo FV

- Posicione el cursor sobre la función BD utilizando las teclas flecha (▲,▼) y confirme con ENTER. El visualizador aparece la siguiente pantalla:
 - El tipo de módulo seleccionado
 - El valor de los parámetros asociados al módulo (ver Tabla 1)
- Use las teclas flecha (◀ , ►) para seleccionar el tipo de módulo "DEFECTO" y confirme con ENTER
- Pulse la tecla ENTER, seleccione el comando "Nuevo" (que permite definir un nuevo módulo) y confirme con ENTER. Use las teclas flecha (▲,▼) para desplazarse por el listado de los parámetros.

- 4. El instrumento presenta un teclado virtual donde es posible definir el nombre del módulo (ej: SUNPOWER 210) usando las teclas flecha (▲, ▼, ◀, ▶). La pulsación de la tecla ENTER permite la inserción de cada carácter del nombre dígito a dígito.
- Pulse la tecla SAVE para guardar el nombre del nuevo módulo definido o la tecla ESC/MENU para salir sin guardar
- 6. Inserte el valor de cada parámetro (ver Tabla 1) en función del data sheet del constructor Posicione el cursor sobre el parámetro a definir utilizando las teclas flecha (▲,▼) y configure el valor utilizando las teclas flecha (◀, ►). Tenga pulsada las teclas (◀, ►) para efectuar una rápida configuración de los valores. Pulse la tecla HELP durante unos segundos en el caso que no conozca el valor, con el fin de insertar el valor por defecto
- Pulse la tecla SAVE para guardar las configuraciones efectuadas o ESC/MENU para salir sin guardar. En el instrumento aparece el mensaje "Datos no memorizados

01/07/10	15:34	:26	
Tipo :∢	DEF	ЕСТО	
A Pmax Voc Vmpp Isc Impp Toll- ▼	= = = =	$ \begin{array}{r} 185 \\ 44.5 \\ 37.5 \\ 5.40 \\ 4.95 \\ 0 \\ \end{array} $	W V A A %
Selección		DB	

,	01/07/10	15:	34:26	
ì	Tipo :	Image: D	EFECTO	
?	A Pmax Voc Vmpp Isc Impp Toll- ▼		185 44.5 37.5 5.40 4.95 0	W V A A %
	Nuevo			
	Selecciór	า	BD	

3	01/07/10	15:34	:26	
2	Tipo	:		
ì	▲ Pmax	=	185	W
r	Voc	=	44.5	V
		TEC	LADO	
	SUNPO	WER	210	
)	ABCDE	EFGH	ΗJΚ	LMNOP
•	QRSTU	JVWX	(YZ-	+ 0 1 2 3
1	45678	9 S F	PACE	DEL
		SAVE	/ ESC	

01/07/10	15:	34:26			
Tipo :	SU	ΝΡΟ	WΕ	R 2	10
					
Pmax		•	0		W
Voc Vmpp Isc Impp Toll- ▼		0 0 0.).0).0 00 00 00		V V A %
			BD		

ATENCIÓN

Al pulsar la tecla **SAVE** el instrumento controla las condiciones mostradas en la Tabla 1 y, en el caso que una o más no estén verificadas, aparece en el visualizador uno de los mensajes de error listados en el § 6.4 y no guarda la configuración hasta que las causas de error no estén resueltas

5.3.2. Modificar un módulo FV existente

- 1. Seleccione el módulo FV a modificar en la base de datos utilizando las teclas flecha (\triangleleft , \triangleright)
- 2. Pulse la tecla ENTER y seleccione el comando "Modificar" usando la tecla flecha (▼)
- 3. Confirme la selección con ENTER

;	01/07/10	15:3	34:26		
	Tipo :∢	SU	ΝΡΟ	WΕ	R210 ▶
)	▲ Pmax Voc Vmpp Isc Nuevo	= = =	2 47. 40. 5.	10 70 00 75	×<<
	Modific	ar			
	Borrar				
	Borrar	Tod	0		
	Selecci	ón		C	ONFIG

ilizando	01/07/10	15:	34:26	
ndo las	Tipo :	SU	NPOWE	R 210
,)	Pmax	=	◀ 210	► W
valores.	Voc	=	47.70	V
el caso	Vmpp	=	40.00	V
alor por	ISC	_	5.75	A
alor por	Toll-	Ē	5.25	×
	V		Ũ	,,,
aciones				
. En el				ONFIG

3	01/07/10	15:34	:26	
	Tipo :∢	SUN	POWE	R210 ►
"	▲ Pmax	=	210	W
)	Voc Vmpp Isc	= 4	47.70 40.00 5.75	V V A
r	Nuevo		0.10	
a	Modific	ar		
	Borrar			
)	Borrar	Todo		
	Selecci	ón		CONFIG

- 4. El instrumento presenta un teclado virtual el cual es 01/07/10 15:34:26 posible redefinir el nombre del módulo usando teclas Tipo: < SUNPOWER210 ► flecha ($\blacktriangle, \nabla, \triangleleft, \downarrow$). La pulsación de la tecla ENTER permite la inserción de cada carácter del nombre dígito a Voc dígito.
- 5. Pulse la tecla SAVE para guardar el nombre del nuevo módulo así definido o para acceder a la nueva programación de los parámetros.
- Modifique el valor de los parámetros deseados ut las teclas flecha (▲,▼) y configurar el valor utiliza teclas flecha (◀, ►). Tenga pulsada las teclas (para efectuar una rápida configuración de los Pulse la tecla **HELP** durante unos segundos en que desconozca el valor con el fin de insertar el va defecto
- 7. Pulse la tecla SAVE para guardar las configura efectuadas o ESC/MENU para salir sin guardar instrumento aparece el mensaje "Datos no memorizados"

5.3.3. Borrar un módulo FV existente

- 1. Seleccione el módulo FV presente en la base de datos utilizando las teclas flecha (\blacktriangleleft , \blacktriangleright)
- 2. Pulse la tecla ENTER y seleccione el comando "Borrar" usando la tecla flecha (▼) para borrar el módulo seleccionado.
- 3. Pulse la tecla ENTER y seleccione el comando "Borra Todo" usando las teclas flecha (▼) para borrar cada módulo presente en la base de datos.
- 4. Confirme la selección con ENTER o bien pulse ESC/MENU para salir de la función.

ATENCIÓN

No es posible modificar ni borrar el módulo FV por DEFECTO presente como configuración de fábrica.

6. INSTRUCCIONES OPERATIVAS

6.1. CONEXIONADO DE INSTALACIONES FV (SOLAR I-VW, SOLAR I-VE)

Por simplicidad, seguidamente en este parágrafo se adoptará el término "string" también expresado con el término "campo fotovoltaico" siendo más oportuno. Desde el punto de vista del instrumento la gestión de un solo string o de más strings en paralelo entre el (campo fotovoltaico) se idéntica. Se indicará además con el acrónimo **MPPT** (Multiple Power Point Tracker) la característica del convertidor CC/CA (inversor) en grado de maximizar la potencia CC extraído por el campo fotovoltaico y con el acrónimo **PRp** el Perfomance ratio (evaluado sobre la base de la potencia activa). Vea el § 11.1 para más detalles.

ATENCIÓN

Para la evaluación de los PRP la medición de la DC (voltaje y corriente) NO ES estrictamente necesario

Es necesario si se quiere evaluar la eficiencia de la sección fotovoltaica (nDC) y la sección de conversión DC / AC (nAC)

Simbolo	Descripción	Unid.
PRp	Performace Ratio (evaluado sobre la base de la potencia activa)	
Irr	Irradiación	W/m ²
Pnom	Potencia nominal del campo fotovoltaico	kW
Тс	Temperatura moduli	°C
Те	Temperatura ambiente	°C
Pdc, Pdcx	Potencia totale CCmedida, Potenza CC medida del campo FV x (x=1,2,3)	kW
Pac, Pacx	Potencia totale CA medida, Potenza CA medida Fase x (x=1,2,3,)	kW
ndc	Eficiencia del campo fotovoltaico	
nac	Eficiencia del convertidor CC/CA	
Vdc, Vdcx	Tensión CC medida, Tensión CC medida del campo FV x (x=1,2,3)	V
ldc, ldcx	Corriente CC medida, Corriente CC medida del campo FVx (x=1,2,3)	А
Vac, Vacx	Tensión CA medida, Tensión CA medida Fase x (x=1,2,3,)	V
lac, lacx	Corriente CA medida, corriente CA medida Fase x (x=1,2,3,)	A

Descripción de los símbolos que aparecen

6.1.1. Conexión Instalación FV en Mono MPPT - Salida CA monofásico

El instrumento SOLAR I-Vw, SOLAR I-Ve (MASTER) emparejado con la unidad remota SOLAR-02 permite efectuar el conexionado sobre la instalación FV caracterizada desde 1 MPPT en salida Monofásica. La unidad remota SOLAR-02 (dedicada al registro de los valores de Irradiación y temperatura) está lista para comunicar con el SOLAR I-Vw, SOLAR I-Ve (para la gestión de la operación de sincronización y descarga de los datos) a través del conexionado wireless por radiofrecuencia (**RF**) activo hasta una distancia máxima de aproximadamente **1m** entre ellas.

ATENCIÓN

- La máxima tensión entre las entradas C1, C2 es de 1000VCC (SOLAR I-Vw) o 1500VCC (SOLAR I-Ve) y entre las entradas P1, P2 es de 265VCA rms. No mida tensiones que excedan los límites expresados en este manual. La superación de tales límites pueden causar shock eléctrico al usuario y dañar al instrumento
- Para garantizar la seguridad del usuario, durante la fase de las conexiones, ponga fuera de servicio el sistema en examen actuando sobre el interruptor/seccionador aguas arriba y aguas abajo del convertidor CC/CA (inversor).o

Fig. 4: Conexión del instrumento para conexión sobre instalaciones FV Monofásicas

- 1. Controle eventualmente la configuración sobre el SOLAR-02 la sensibilidad de la célula de referencia coherentemente con el tipo de módulos FV en examen (ver manual de instrucciones del SOLAR-02)
- 2. Se recomienda efectuar una valoración preliminar del valor de la Irradiación sobre la planta de los módulos FV en examen a través de la unidad SOLAR-02 (en funcionamiento independiente) y la célula de referencia
- Encienda el SOLAR I-Vw, SOLAR I-Ve y controle y eventualmente modifique las configuraciones de base del instrumento relativamente al umbral mínimo de la irradiación, el fondo de escala de las pinzas CA y CC, al periodo de integración y los parámetros del sistema en examen (ver § 5.1.1, §5.1.5 y § 5.2)

-WHT°

- 4. Para garantizar la seguridad del usuario ponga fuera servicio el sistema en examen actuando sobre el interruptor/seccionador aguas arriba y aguas abajo del convertidor CC/CA (inversor).
- 5. En el caso de inversor dotado de más de un seguidor de potencia (MPPT) deje conectado sólo el string correspondiente al primer MPPT colores como muestra la Fig. 4. Será necesario repetir las operaciones de seguimiento indicadas dejando conectada sólo el string conectado al segundo MPPT, al tercero, etc.
- 6. Acercar entre ellos (máx. 1 m aprox.) el SOLAR I-Vw, SOLAR I-Ve y el SOLAR-02. **Todos los instrumentos deben estar encendidos** (ver el manual de instrucciones del SOLAR-02 para más detalles)
- Sobre el SOLAR I-Vw, SOLAR I-Ve pulse la tecla MENU, seleccione la función EFF y pulse ENTER esperando que las dos unidades inicien la comunicación entre ellos. Esta condición es evidenciada por la presencia simultánea de las siguientes indicadores:
 - Símbolo 1 fijo (no intermitente) sobre el visualizador del SOLAR I-Vw, SOLAR I-Ve
 - Símbolo **1** fijo (no intermitente) sobre el visualizador del SOLAR-02
- 8. Conecte las entradas **C2** y **C1**, respectivamente, a la salida positiva y negativa del string respetando la polaridad. Conecte las entradas **P1** y **P2**, respectivamente a los conductores de Fase y Neutro respetando la polaridad y los colores indicados en Fig. 4.
- 9. Conecte el conector de salida de la pinza CC a la entrada **ICC**.

ATTENZIONE

ANTES DE CONECTAR LAS PINZAS CC SOBRE LOS CONDUCTORES Encienda la pinza, controle el LED indicando el estado de las pilas de la pinza (si son presentes), seleccione la escala correcta, pulse la tecla ZERO sobre la pinza CC y verifique sobre el visualizador del SOLAR I-Vw, SOLAR I-Ve el efectivo ajuste a cero del valore ICC correspondiente (valores hasta 0.02A son aceptables).

- 10. Conecte la pinza de corriente CC sobre el conductor positivo de salida del grupo de módulos respetando el sentido de la flecha presente sobre la misma pinza como indica la Fig. 4. Posicione la pinza lo más lejos posible del inversor y evite que el toroidal esté en proximidad con el conductor negativo
- 11. Conecte la pinza CA sobre el conductor de Fase L1 **respetando el sentido de la flecha** presente sobre la misma pinza como indica la Fig. 4. Posicione la pinza lo más lejos posible del inversor y evite que el toroidal esté en proximidad con el conductor Neutro. Conecte la salida de la pinza a la entrada **IAC** del instrumento
- 12. Conecte nuevamente en servicio el sistema eléctrico en examen

13. En el visualizador aparece la siguiente pantalla que muestra los valores de los parámetros eléctricos sobre el lado CC del inversor

•	01/07/10	15:34:26	
	PRp Irr Pnom Tc Pdc Vdc Idc ndc	3.500 45 30 3.125 389 8.01	W/m2 kW °C °C kW V A
	G	O para In	icio
	Selección		EFF

- 14. Pulse la tecla (▼) para acceder a la segunda pantalla 01/07/10 15:34:26 que muestra los valores de los parámetros eléctricos ▲ Pdc sobre el lado CA del inversor. Antes de activar el conexionado:
 - > Verifique la presencia del símbolo "1) parpadeante que indica la búsqueda en curso de la conexión RF con la unidad remota SOLAR-02
 - > Verifique que la potencia activa Pac sea positiva. En caso de valores negativos de potencia activa abra la pinza, rótela 180° y reconéctela al conductor
 - > Verifique que el valor del rendimiento CA η ac = Pac / Pdc sea un valore coherente (ejem: una situación de nac > 1 no es físicamente posible)
- 15. Mantenga la unidad SOLAR-02 siempre en proximidad de unidad principal, pulse la tecla GO/STOP para activar conexionado. El mensaje "reg. en espera" aparece sobre visualizador de la unidad principal y el mensaje "HOLD" e el visualizador del SOLAR-02 además de la indicación d tiempo en segundos en espera del instante "00"

Vdc Idc ndc Pac Vac Iac nac	389 8.01 3.012 231 13.03 0.96	V °C kW V A
Selecci	GO para In ón	icio EFF 土 에

3.125

kW

la	01/07/10	15:34:26	
el el en el	▲ Pdc Vdc Idc Ndc Pac Vac Iac Nac	3.125 389 8.01 3.012 231 13.03 0.96	kW V A°C kW V A
	re	eg. en esp	pera
	Selección		EFF 🛨 🕅

3	01/07/10	15:35:00	
	A Pdc Vdc Idc Ndc Pac Vac Iac Nac	3.125 389 8.01 3.012 231 13.03 0.96	kW V A °C kW V A
	r Selección	eg. en cu	rso EFF

16. En el instante "00" sucesivo a la pulsación de la tecla GO/STOP el conexionado ha iniciado y las dos unidades son entre ellas sincronizadas. En tal condición el mensaie "reg. en curso" aparece en el visualizador de la unidad principal y el mensaje "Recording..." aparece sobre el visualizador del SOLAR-02

-**M[•]HT**°

- 17. En cualquier momento será posible analizar el estado actual del registro a través de la presión de la tecla MENU. Serán st visualizados:
- Fecha y hora del inicio del registro
- El valor configurado del periodo de integración
- El número de Periodo transcurrido desde el inicio del registro
- La capacidad de memoria residual de registro.

Pulse la tecla **ESC** para salir de la pantalla

al	15/05/10 15:35:00
า	Start 14/02/00 17:18:00 Periodo: 5s Numero IP 61 Autonomía 0d 1h
)	
	Reg. en curso
	reg. en curso
	Selección MPP 1

- 18. A este punto es posible mover la unidad SOLAR-02 en proximidad del string FV para efectuar la medida de irradiación y temperatura a través de las respectivas sondas. Cuando la distancia entre la unidad SOLAR-02 y SOLAR I-Vw, SOLAR I-Ve es tal que no permite el conexionado por RF, sobre el visualizador del SOLAR-02, el símbolo "10" parpadea durante unos 30s luego desaparece, mientras el SOLAR I-Vw, SOLAR I-Ve queda en espera durante 1 minuto aproximadamente.
- 19. Posicione la célula de referencia sobre la planta de los módulos FV. Haga referencia a los relativos manuales de instrucciones para un correcto montaje
- 20. Posicione el sensor de temperatura en contacto con el módulo fijándolo con cinta y evitando falsas conexiones
- 21. Espere durante unos segundos para estabilizar la sonda a una medida estable y poder conectar la sonda de Irradiación a la entrada **PYRA/CELL** y la sonda de temperatura a la entrada **TEMP** de la unidad SOLAR-02
- 22. Espere el mensaje "**READY**" en el visualizador del SOLAR-02 indicando que la unidad ha detectado los datos con Irradiación solar > umbral mínimo configurado (ver § 5.1.5)
- 23. Con el mensaje "READY" en el visualizador espere aproximadamente 1 minuto en modo de recoger un cierto número de muestras
- 24. Desconecte las sondas de Irradiación y temperatura de la unidad SOLAR-02 y acerque el SOLAR I-Vw, SOLAR I-Ve (max 1m)
- 25. La unidad **principal** SOLAR I-Vw, SOLAR I-Ve debe ser en modalidad **EFF**. Si está ausente el símbolo "上M" parpadeante, pulse la tecla ▲ para reactivar la búsqueda del conexionado RF. Consecuentemente sobre la unidad principal será visualizado el mensaje "conexión de radio activa".
- 26. Pulse la tecla ▼ sobre el SOLAR-02 para reactivar el conexionado RF. Consecuentemente sobre la unidad principal será visualizado el mensaje "conexión radio activa"
- 27. Para detener la prueba pulse la tecla **GO/STOP** sobre el instrumento y confirme con **ENTER** a la finalización del registro
- 28. El mensaje "**SEND**" es mostrado en el visualizador de la unidad SOLAR-02 e indica la transferencia de los datos a la unidad principal.
- 29. Después de la fase automática de transferencia de datos, en la pantalla del instrumento mostrará el resultado de la prueba que puede aparecer:
 - Non visualizable: si la irradiación no ha alcanzado nunca un valor estable > umbral mínimo configurado (vea § 5.2.3)
 - Visualizable: Después de la fase automática de transferencia de datos, sobre el instrumento serán automáticamente visualizados los valores de máxima prestación
- 30. Pulse **SAVE** para guardar los resultados obtenidos (ver § 7.1) o **ESC** para salir de la pantalla de los resultados y volver a la pantalla inicial

6.1.2. Conexión Instalación FV Mono/Multi MPPT - Salida CA mono/trifásica

El instrumento SOLAR I-Vw, SOLAR I-Ve emparejado con la unidad remota SOLAR-02 y MPP300 (opcional) permite efectuar el conexionado sobre la instalación FV caracterizada desde 1 o más strings (habiendo la misma orientación e inclinación) en salida Monofásica o Trifásica.

La unidad remota MPP300 está lista para comunicar con el SOLAR I-Vw, SOLAR I-Ve (para la gestión de la operación de sincronización y descarga de los datos) y con la unidad remota SOLAR-02 (dedicada al registro de los valores de Irradiación y temperatura) a través del conexionado wireless por radiofrecuencia (**RF**) activo hasta una distancia máxima de aproximadamente **1m** entre ellas.

ATTENZIONE

- Cuando el SOLAR I-Vw, SOLAR I-Ve está configurado para utilizar el MPP300 como unidad remota TODOS las conexiones relativas con parámetros eléctricos (Tensiones y corrientes) son ejecutados sobre la unidad MPP300. El SOLAR I-Vw, SOLAR I-Ve no debe haber ninguna tensión o corriente conectada en las propias entradas.
- La máxima tensión para las entradas de MPP300 son 1000VCC entre las entradas VDC1,VDC2, VDC3 y 600VCA entre las entradas VAC1, VAC2, VAC3. No mida tensiones que excedan los límites expresados en este manual. La superación de tales límites pueden causar shock eléctrico al usuario y dañar al instrumento
- Para garantizar la seguridad del usuario, durante la fase del conexionado lleve fuera de servicio el sistema en examen actuando sobre el interruptor/seccionador aguas arriba o abajo del convertidor CC/CA (inversor).
- Controle las eventuales configuraciones sobre el SOLAR-02 la sensibilidad de la célula de referencia coherentemente con el tipo de módulos FV que se han de examinar (ver manual de uso del SOLAR-02)
- 2. Se recomienda efectuar una valoración preliminar del valor de la Irradiación sobre el plano de los módulos FV en examen a través de la unidad SOLAR-02 (en funcionamiento independiente) y la célula de referencia
- Encienda el SOLAR I-Vw, SOLAR I-Ve y controle eventualmente modificar las configuraciones relativamente al tipo de unidad remota, al umbral mínimo de irradiación, al fondo de escala de las pinzas CA y CC, al periodo de integración y los parámetros del sistema en examen (ver § 5.1.4, § 5.1.5, § 5.1.6, § 5.2.2)
- 4. Para garantizar la seguridad del usuario lleve fuera de servicio el sistema en examen actuando sobre los interruptores/seccionadores aguas arriba y abajo del convertidor CC/CA (inverter)
- 5. Acercar entre ellos (máx. 1 m aprox.) el SOLAR I-Vw, SOLAR I-Ve y el SOLAR-02. **Todos los instrumentos deben estar encendidos** (ver el manual de instrucciones del SOLAR-02 para más detalles)
- Sobre el SOLAR I-Vw, SOLAR I-Ve pulse la tecla MENU, seleccione la función CLD y pulse ENTER y espere que las tres unidades inicien la comunicación entre ellos. Esta condición es evidenciada por la presencia simultánea de los siguientes indicadores:
 - Símbolo 1 fijo (no intermitente) sobre el visualizador del SOLAR I-Vw, SOLAR I-Ve
 - Símbolo **1** fijo (no intermitente) sobre el visualizador del SOLAR-02
 - Parpadeando en verde el LED MASTER y REMOTE sobre la unidad MPP300
- 7. Conecte las entradas VDC1(+) y VDC1(-) de la unidad MPP300 de los terminales de salida del string respetando la polaridad y los colores indicados en la Fig. 5 o Fig.6
- Repita la operación indicada en el punto de arriba para otros eventuales seguidores de potencia CC a monitorizar utilizando las entradas VDC2 y VDC3 en acuerdo al número de entradas CC configuradas (ver § 5.2.1.1)

9. Conecte el conector de salida de la pinza CC a la entrada IDC1 de la unidad MPP300.

ATENCIÓN

 \wedge

ANTES DE CONECTAR LAS PINZAS CC SOBRE LOS CONDUCTORES Encienda la pinza, controle el LED indicando el estado de la pila interna de la pinza (si es presente), seleccione la escala correcta, pulse la tecla ZERO sobre la pinza CC y verifique sobre el visualizador del SOLAR I-Vw, SOLAR I-Ve el ajuste a cero del valor Idc correspondiente (valor de hasta 0.02A es aceptable.

- 10. Inserte la pinza de corriente CC sobre el conductor positivo de salida del string **respetando** el sentido de la flecha presente sobre la misma pinza como indica la Fig. 5 o Fig. 6 Posicione el maxilar de la pinza lo más alejado posible del inversor y del conductor negativo de salida del mismo string.
- 11. Repita la operación indicada en el punto de arriba para otros eventuales seguidores de potencia CC a monitorizar utilizando las entradas **VDC2** y **VDC3** en acuerdo al número de entradas CC configuradas (ver § 5.2.1.1).
- 12. Conecte las entradas VAC1 y N de la unidad MPP300 respectivamente a los conductores de Fase y Neutro respetando la polaridad y los colores indicados en Fig. 5 o Fig. 6. En el caso de instalaciones trifásicas y el conductor de Neutro no esté disponible, conecte la entrada N a Tierra.
- 13. En el caso de un inverter con salida Trifásico (ver configuración § 5.2.1.1), repita la operación indicada al punto sobre los restantes fases utilizando las entradas VAC2 y VAC3 del MPP300.
- 14. Conecte la pinza CA sobre el conductor de Fase L1 **respetando el sentido de la flecha** presente sobre la misma pinza como indica la Fig. 5 o Fig.6. Posicione el maxilar de la pinza lo más alejado posible del inverter y del conductor de Neutro. Conecte la salida de la pinza a la entrada **IAC1** del MPP300.
- 15. En el caso de un inverter con salida Trifásico (ver configuración § 5.2.1.1), repita la operación indicada al punto sobre los restantes fases utilizando las entradas **IAC2** y **IAC3** del MPP300.
- 16. Reinicie nuevamente el servicio el sistema eléctrico en examen.
- 17. En el visualizador del SOLAR I-Vw, SOLAR I-Ve serán visualizados los valores de los parámetros eléctricos completos del sistema en examen. En particular en esta pantalla:
 - Pdc = Potencia CC completa (suma de las potencias del string)
 - Pac = Potencia CA(si es monofásico) o suma de las potencias CA (si es trifásico)

15:34:26

_ _

W/m2

Se aconseja controle que los valores de los parámetros Selección eléctricos (Pnom, Pdc, Pac) y que el valor del rendimiento CA (ηac) sea coherente con el sistema en examen (Ejemplo: $\eta ac > 1$ no es físicamente aceptable).

- 18. Sobre el SOLAR I-Vw, SOLAR I-Ve pulse la tecla (▼) para acceder a la segunda pantalla que muestra los valores de los parámetros CC en la salida del string en acuerdo al número de entradas CC configurado (ver § 5.2.1.1). En particular en esta pantalla:
 - Vdcx=Tensión cc del string x
 - Idcx=Corriente cc del string x
 - Pdx = Potencia cc del string x.

Se aconseja controle que los valores de los parámetros eléctricos (Vcc, Icc, Pcc) sean coherentes con el sistema en examen.

- 19.Sobre el SOLAR I-Vw, SOLAR I-Ve pulse la tecla (▼) para acceder a la tercera pantalla que muestra los valores de los parámetros eléctricos sobre el lado CA del coherentemente configuraciones inverter con las efectuadas en el §5.2.2 (monofásicas, trifásicas 4 hilos). En particular en esta pantalla:
 - Vacxy=Tensión CA entre fase y Neutro (si es monofásico) o entre las fases x e y (si es trifásicas)
 - Idcx=Corriente ca de la fase x
 - Pacx = Potencia ca de la fase x

Se aconseja controle que los valores de los parámetros sistemas FV con salida eléctricos (Vca, Ica, Pca) sean coherentes con el sistema.

- 20. Mantenga siempre los tres instrumentos en proximidad entre ellos (máx. 1m aprox.), pulse la tecla GO/STOP sobre el SOLAR I-Vw, SOLAR I-Ve para activar el conexionado. Consecuentemente:
- a. Sobre el visualizador del SOLAR I-Vw, SOLAR I-Ve aparece el mensaje "reg. en espera".
- b. Sobre el visualizador del SOLAR-02 aparece el mensaje "HOLD" y la indicación del tiempo en segundo remanentes antes del inicio del registro
- c. Sobre el MPP300 se enciende en verde (no parpadeante) el LED STATUS
- 21. En el instante "00" siguiente a la pulsación de la tecla 15/05/10 GO/STOP la prueba ha iniciado y las tres unidades son entre ellos sincronizados. En tal condición:
 - Sobre el visualizador del SOLAR I-Vw, SOLAR I-Ve aparece el mensaje "reg. en curso"
 - Sobre el visualizador del SOLAR-02 aparece el mensaje "Recording..."
 - Sobre el MPP300 parpadea en verde el LED STATUS

)	15/05/10	15:34:26	
	Vdc1 Vdc2 Vdc3 Idc1 Idc2 Idc3	460.1 461.4 462.5 2.25 2.31 2.21	kW V A A A A A
	Pdc1 Pdc2 Pdc3	1.035 1.066 1.024	kW kW kW
	G	O para I	nicio
	Selección		мрр т 🦏

Ejemplo de pantalla para trifase

15/05/10	15:34:26	
PRp Irr Pnom Tc Pdc Pdc Pac ndc nac	3.500 3.125 2.960 0.95	W/m2 kW °C °C kW kW
re	eg. en es	pera
Selección		мрр 抗

- -M`HT°
- 22. En cualquier momento será posible analizar el estado actual 15/0 del registro a través de pulsar la tecla **MENU**. Serán sta visualizados:
- a. fecha y hora de inicio del registro
- b. el valor configurado del periodo de integración
- c. el número de Periodos transcurrido del inicio registro
- d. La capacidad de memoria residual de registro.
- Pulse la tecla **ESC** para salir de la pantalla

al	15/05/10 15:35:00	
n	Start 14/02/00 17:18:00 Periodo: 5s Número IP 61 Autonomía 0d 1h	
	Reg. en curso reg. en curso Selección MPP 1	

- 23. En este punto es posible llevar la unidad SOLAR-02 en proximidad del grupo de módulos FV para efectuar las medidas de irradiación y temperatura a través de sus respectivas sondas. Cuando la distancia entre la unidad SOLAR-02 y MPP 300 es tal que no permite la conexión RF, sobre el visualizador del SOLAR-02, el símbolo "**1**mi" parpadea durante aprox. 30s después desaparece. La unidad MPP300 espera siempre en busca del conexionado RF con la unidad SOLAR-02.
- 24. Posicione la célula de referencia sobre el plano de los módulos FV. Haga referencia al relativo manual de instrucciones para un correcto montaje
- 25. Posicione el sensor de temperatura de contacto con el cristal del módulo fijándolo y evitando tocarlo con los dedos (acción que puede falsear la medida).
- 26. Espere unos segundos para permitir que la sonda se estabilice y poder conectar la sonda de Irradiación a la entrada **PYRA/CELL** y la sonda de temperatura a la entrada **TEMP** de la unidad SOLAR-02
- 27. Espere el mensaje "**READY**" sobre el visualizador del SOLAR-02 e indique que la unidad ha detectado los datos con Irradiación solar > umbral mínimo configurado (ver § 5.1.5)
- 28. Con el mensaje "READY" en el visualizador espere cerca de 1 minuto en modo de recopilar un cierto número de muestreos
- 29. Desconecte la sonda de Irradiación y temperatura de la unidad SOLAR-02, e iniciarla con la unidad MPP300. Inicie además la unidad principal SOLAR I-Vw, SOLAR I-Ve con el MPP300. Las tres unidades deben estar cercanas entre ellas (max 1m).
- 30. La unidad principal SOLAR I-Vw, SOLAR I-Ve debe ser en modalidad CLD, si aparece el símbolo "上谕" parpadeante, pulse la tecla ▲ para reactivar la búsqueda del conexionado RF
- 31. Pulse la tecla ▼ sobre el SOLAR-02 para reactivar el conexionado RF. Consecuentemente sobre la unidad principal será visualizado el mensaje "conexión radio activa"

I-V400w - I-V500w - SOLAR I-Vw - SOLAR I-Ve

- 32. Para detener el conexionado pulse la tecla **GO/STOP** sobre el instrumento SOLAR I-Vw, SOLAR I-Ve y confirme con **ENTER** en busca del paro del registro
- 33. Sobre el visualizador del SOLAR I-Vw, SOLAR I-Ve será visualizado el mensaje "DESCARGA DATOS" indicando la transferencia de los datos respecto a la unida principal en sus varias fases.
- 34. Después de la fase automática de transferencia de datos, en la pantalla del instrumento mostrará el resultado de la prueba que puede aparecer:
- Non visualizable: si la irradiación no ha alcanzado nunca un valor estable > umbral mínimo configurado (vea § 5.2.3)
- Visualizable: Después de la fase automática de transferencia de datos, sobre el instrumento serán automáticamente visualizados los valores de máxima prestación
- 35. Pulse **SAVE** para guardar los resultados obtenidos (ver § 7.1) o **ESC** para salir de la pantalla de los resultados y volver a la pantalla inicial

15/05/10	15:35:00	
PRp Irr Pnom Tc Te Pdc Pac ndc ndc nac	$\begin{array}{c} 0.81\\ 971\\ 3.500\\ 45.1\\ 30.5\\ 3.125\\ 2.960\\ 0.86\\ 0.95 \end{array}$	W / m 2 k W ° C ° C k W k W
	ÉXITO S	
Selección		CLD TW

WHT°

6.2. MEDIDA DE LA CURVA I-V

El instrumento permite la obtención de la característica I-V en modo de activación Manual o Automática operando en una de las dos siguientes modalidades:

> Obtención de la curva I-V con medida de Irr/Temp efectuada directamente desde instrum.

Obtención de la curva I-V con medida de Irr/Temp efectuada a través de la u. rem. SOLAR02 Para información teórica sobre la medid ver el § 11.3

6.2.1. Curva I-V con medida Irr/Temp efectuada directamente desde el instrumento ATENCIÓN

- \bigwedge
- La máxima tensión entre las entradas P1, P2, C1 y C2 es de 1000VCC (para I-V400w y SOLAR I-Vw) o 1500VCC (para I-V500w y SOLAR I-Ve). No mida tensiones que excedan los límites expresados en el § 10.2.
- La corriente máxima tolerable por el instrumento es de 15A. No efectúe pruebas sobre stringhe de módulos FV en paralelo
- No efectúe nunca pruebas sobre módulos/stringhe FV conectados al convertidor CC/CA
- 1. Encienda el instrumento pulsando la tecla ON/OFF
- 2. Controle que la unidad remota SOLAR-02 no esté seleccionada (opción NO) sobre el instrumento (ver § 5.1.1)
- 3. Controle que los valores configurados en la sección "Unidad Remota" (ver § 5.1.4) sean coherentes con la característica de la célula de referencia utilizada en función del tipo de módulo/stringa en examen
- 4. Controle que el valor configurado en la sección "Irradiación" (ver § 5.1.5) sean coherentes con las medidas que se pretender efectuar. Se aconseja se efectúen las medidas con umbral ≥ 700 W/m² en acuerdo con la normativa IEC/EN60891
- 5. Vuelva al MENU principal y seleccione la función "I-V"

0.		
6.	Pulse la tecla ENTER, seleccione con las teclas flecha	15/05/10 15:34:26
	(▲,▼) el valor "Medida ▶ "	Vcc = 0.0 ∨
7.	Utilice la tecla flecha ► para acceder al submenú interno, seleccione el valor "Caract. IV" y confirme con ENTER	Irr = 0 W/m2
	característica IV	Tc = °C
		Modulo: SUNPOWER 210
		Caract. IV
		Conf IV Check
		Med
		Selección I – V
8.	La siguiente pantalla es mostrada en el cual:	01/07/10 15:34:26
	• Vdc = tensión CC en salida del módulo, medido entre	$Vdc = 0.0 \vee$
	 Ias entradas C1 y C2 del instrumento Irr = irradiación medida por la célula de ref. en 	Irr = W/m2
	dotación	Tc = Auto
	 Tc = temperatura de la célula del módulo. Este campo presenta las siguientes indicaciones en función del modo de temperatura seleccionado: 	Módulo: DEFAULT Temp: Auto Start: Manual
	AUTO → modo medida Temp. Automatico Número → modo medida Temp. MAN o AUX	Selección I - V
	\sim "" \rightarrow mod ALIX con sonda no conectada	

- Módulo = tipo de módulo actualmente seleccionado
- Temp = modo de medida de la temp. del módulo
- Start = modo de activación de la medida

-M`HT°

9. Pulse la tecla ENTER, seleccione la función 01/07/10
 "configuración" y confirme con ENTER para acceder a la pantalla siguiente en el cual es posible efectuar las configuraciones sobre la selección del tipo de módulo y sobre el número de módulos del cual está constituida el stringer objeto de la prueba
 9. Pulse la tecla ENTER, seleccione la función 01/07/10
 9. Otropical está constituida el stringer objeto de la prueba

- 10. Utilice las teclas flecha (◀, ►) para seleccionar el tipo de módulo entre los presentes en el base de datos interna del instrumento (ver § 5.3.1)
- del Instrumento (ver § 5.3.1)
 11. Utilice las teclas flecha (▲, ▼), seleccione la función "Mod. x Instr" y utilice las teclas flecha (◀, ►) para insertar el número de módulos del stringa en prueba. El número máximo de módulos configurable son 50
- 12. Utilice las teclas flecha (▲,▼), seleccione el texto "Años inserv" y utilice las teclas flecha (◀, ►) para seleccionar el número de años de servicio de la instalación/string/campo FV desde su instalación (ver el § 6.2.3). El valor máximo configurable es 25.0 (0.5 = 6 meses)
- 13. Utilice las teclas flecha (▲,▼), seleccione la función
 "Temp" y utilice las teclas flecha (◀, ►) para seleccionar el tipo de medida de la temp. módulo entre la modalidad:
 - ➤ "Auto" → medida automática en función del valor medido de tensión en vacio (método recomandado)
 - ➤ Manual → inserta por parte del usuario el valor de la temperatura del módulo en el campo "Valor" correspondiente
 - ightarrow Aux ightarrow medida de la temp.con sonda auxiliar
- 14. Utilice las teclas flecha (▲, ▼), seleccione la función "Start" y utilice las teclas flecha (◀, ►) para seleccionar el tipo de activació de la medida entre las modalidades:
 - "Auto" → prueba activada automáticamente por el instrumento en presencia de una tensión de entrada estable por alrededor de 1s y valor entre el rango de medición (vea § 10.2)
 - > "Manual" → prueba activada por el usuario a la presión de la la tecla GO/STOP
- 15. Pulse SAVE para guardar la selección efectuada o bien ESC/MENU para salir
- 16. Monte el soporte sobre el disco del accesorio M304 (inclinómetro) en dotación y apóyelo sobre la planta del módulo. Verifique que la sombra del soporte no se proyecta sobre el disco y caiga dentro del "cerco concéntrico límite" interno al mismo disco (ver Fig. 7b). En caso contrario el ángulo entre los rayos solares y la superficie del módulo es muy elevado y muy distinto de las condiciones de prueba declaradas por el fabricante, por tanto las medidas efectuadas por el instrumento NO son consideradas correctas y es necesario repetir las operaciones en otro momento del día
- 17. Fije el soporte al módulo utilizando los tornillos en dotación y monte la célula de referencia sobre él, si es posible **con terminales de salida hacia abajo**. Rote la célula hasta apoyarla sobre la aleta presente sobre el soporte con el fin de posicionarlo exactamente paralelo al plano del módulo y fíjelo después a través de los tornillos

01/01/10 13.34.20				
Tipo	: ◀ SUNPOWER 210 ►			
Mod.	x Instr : 15			
Años	serv : 4.5			
Temp	: Auto			
Start	: Manual			
Pmax	= 210			
Voc	= 47.70			
Vmpp	= 40.00			
Isc	= 5.75			
lmpp	= 5.25			

CONFIG
- 18. Conecte a la salida de la célula, correspondiente al tipo de módulo en prueba, a la entrada **IRR.** del instrumento utilizando el cable en dotación a la misma célula
- 19. Conecte, si lo utiliza, el sensor de temperatura a la entrada **AUX** del instrumento y al módulo bajo una célula utilizando cinta adhesiva
- 20. Conecte el instrumento al módulo/stringa en prueba como muestra en la siguiente Fig. 7a. En particular conecte el polo Negativo en la salida del módulo/stringa a los terminales P1, C1 y el polo Positivo en la salida del módulo/stringa a los terminales P2, C2. En el modo de activación "Auto" se recomienda el uso del accesorio opcional KITKELVIN

Fig. 7a: Conexionado instrumento módulo/stringa FV

ATENCIÓN

El método utilizado por el instrumento en la medición de la tensión VCC y de la corriente ICC en la salida del módulo/grupo módulos FV es el de "4 hilos" por tanto es posible prolongar los cables de medida conectándolos a las entradas P1, C1, P2, C2 sin necesidad de efectuar ninguna compensación de la resistencia de los cables de prueba. Para prolongar utilice siempre cables con sección ≥ 4 mm²

- 21. Después del conexionado en la instalación, el instrumento 01/07/10 15:34:26 muestra en tiempo real los valores de:
 - Vdc = tensión CC en salida del módulo/stringa
 - Irr = irradiación medido por el sensor
 - Tc = temperatura del módulo

0	01/07/	10 1	15:34:26	
	Vdc	=	367	V
	lrr	=	1045	W/m2
	Тc	=	45	°C
	Módulo	o: SL	INPOWE	R 210
	Selecc	ión	1-	V

ATENCIÓN Al pulsar la tecla **GO/STOP** el instrumento puede mostrar distintos mensajes de error (ver § 6.4) y, por este motivo, no se efectuará la prueba. Controle y elimine, si es posible, las causas de los problemas antes de proseguir con la prueba

22. Pulse la tecla GO/STOP (en modo de activación Manual) 01/07/10 15:34:26 para activar la prueba. En caso de ausencia de condiciones de error, el instrumento muestra el mensaje "Medida en curso..." durante algún segundo en función de la potencia en examen

22. Pulse la lecia GUISTOF (en modo de activación Manual)	01/07/10	15.54.20	
para activar la prueba. En caso de ausencia de	Vdc =	367 V	
"Medida en curso" durante algún segundo en función	Irr =	1045 W	/ m 2
de la potencia en examen	Tc =	45 °C	
	Módulo: S	SUNPOWER 2	10
	Ме	dida en curso	
	Selección	I - V	
23. Al termino de la prueba, el instrumento incluye los valores	01/07/10	15:34:26	
 de los parámetros (referidos todos a un sólo módulo a las condiciones STC) como muestra la siguiente pantalla además del resultado de la prueba (ver § 6.2.3) en base a los cálculos efectuados automáticamente relativos a: Translación de la curva I-V a las condiciones STC Verificación de la tolerancia % de la potencia máxima declarada por el constructor 	Voc Vmpp Impp Isc Pmax FF DPmax RESULT @	= 15.2 = 14.7 = 4.7 = 5.2 = 200 = 77.1 = 2.1	V V A W % %
	Selección	1 - 1	V

ATENCION

- El instrumento se refiere a todos los valores de las parametros a un solo módulo en el STC condición
- La tensión total de grupo obtenida en OPC se divide por el número de módulos del mismo. Teniendo en cuenta este valor "promedio", junto con la corriente medida, el instrumento calcula la curva IV @ OPC, que luego es translata en el STC
- 24. Pulse ENTER para la visualización de los resultados de medida sea en forma numérica que gráfica referido en OPC y STC (ver § 6.2.3)
- 25. Utilice la tecla flecha > para la Selección de la tabla o del gráfico correspondiente
- 26. Pulse la tecla SAVE para guardar el resultado de la prueba en la memoria del instrumento (ver § 7.2) o la tecla ESC/MENU para salir de la pantalla sin quardar y volver al menú principal
- Selección 27. El modo de activación "Auto" requiere la desconexión y conexión de los terminales de prueba para iniciar automáticamente una nueva medida

ES - 36

è	01/07/10	15:34	4:26	
١				
	Voc	=	15.2	V
_	Vmpp	=	14.7	V
	lmpp	=	4.7	А
	lsc	=	5.2	А
	Pmax	=	200	W
	FF	=	77.1	%
	DPmax	=	2.1	%
ι ,	Tabla)	`		
	Gráfico	•	– RESU	

I - V

6.2.2. Curva I-V con medida Irr/Temp efectuada a través de la unidad SOLAR-02

El obtención de la curva I-V con medida de Irrad./Temp. efectuada a través de la unidad remota SOLAR-02 puede ser efectuada en una de las dos siguientes modalidades:

- Unidad remota SOLAR-02 en conexión RF
- Unidad remota SOLAR-02 en registro síncrono (no conexión RF)

6.2.2.1. Obtención curva I-V a través unidad SOLAR-02 en conexión RF

Esta modalidad es posible SÓLO si la distancia entre el instrumento y la unidad remota SOLAR-02 disponen de un conexionado estable en RF. La distancia límite entre el instrumento y la unidad remota es influenciada por obstáculos, humedad del aire, etc.

ATENCIÓN

- La máxima tensión entre las entradas P1, P2, C1 y C2 es de 1000VCC (para I-V400w y SOLAR I-Vw) o 1500VCC (para I-V500w y SOLAR I-Ve). No mida tensiones que excedan los límites expresados en el § 10.2.
- La corriente máxima tolerable por el instrumento es de 15A. No efectúe pruebas sobre stringhe de módulos FV en paralelo
- No efectúe nunca pruebas sobre módulos o stringhe FV conectados al convertidor CC/CA
- 1. Encienda el instrumento pulsando la tecla ON/OFF
- 2. Controle que la unidad remota SOLAR-02 esté seleccionada (opción SI) sobre el instrumento (ver § 5.1.1)
- 3. Controle que los valores configurados en la sección "Solarímetro" (ver § 5.1.4) sean coherentes con las características de la célula de referencia utilizada en función del tipo de módulo/stringa en examen
- 4. Controle que el valor configurado en la sección "Irradiación" (ver § 5.1.5) sea coherente con la medida que se pretende efectuar. Se aconseja efectuar las medidas con un umbral ≥ 700 W/m² en acuerdo a la normativa IEC/EN60891
- 5. Vuelva al MENU principal y seleccione la función "I-V"
- 6. Pulse la tecla ENTER, seleccione con las teclas flecha 15/05/10 15:34:26
 (▲,▼) el valor "Medida ▶"
- 7. Utilice la tecla flecha ► para acceder al submenú interno, seleccione el valor "Caract. IV" y confirme con ENTER para activar la pantalla inicial de la obtención de la característica IV

8. Encienda la unidad remota SOLAR-02 y espere que sobre el visualizador del instrumento aparezca el mensaje "Conexión radio activa"

-M`HT°

- 9. Sobre el visualizador aparece la siguiente pantalla la cual:
 - Vdc = tensión CC de salida del módulo/stringa
 - Irr = irradiación medida por la célula de referencia
 - Módulo = tipo de módulo actualmente seleccionado
 - Temp = modo de medida de la temperatura del módulo
 - Tc = temperatura del módulo FV. Este campo presenta una de las siguientes indicaciones en función de la modalidad de medida de la temperatura seleccionada:
 - > AUTO: mod. medida Temp. Automática
 - Número: mod. medida Temp. MAN o AUX
 - "---": AUX con sonda no conectada
 - Start = modo de activación de la medida
 - El símbolo **1** fijo (no intermitente) que indica la presencia de SOLAR-02
- 10.Pulse la tecla ENTER, seleccione la función 01/07/10 15:34:26
 "Configuración" y confirme con ENTER para acceder a la pantalla siguiente en la cual es posible efectuar la configuración sobre la selección del tipo de módulo y sobre el número de módulos del cual está constituida la stringa objeto del test
- 01/07/10 15:34:26 Vdc =0.0 V Irr W/m2 _ -°C Тc = Auto Módulo: DEFAULT Temp: Auto Start: Manual Ŧ₩ Selección I – V

Vdc	=	0.	0	V	
Irr	= -	· -	-	W/	m 2
Тс	= -	-	-	°C	
Acti	va R	eg.			
Con	figur	acio	źη		
Med	idas	•			
Selec	ción		-	V	
01/07	7/10 ·	15:34	:26		
Tipo	: • S	UNP	OW	ER 2	10 🕨

15

Auto

Manual

47.70

40.00

5.75 5.25

CONFIG

210

4 5

=

=

=

=

=

Años serv

Temp

Start

- 11.Utilice las teclas flecha (◀, ►) para seleccionar el tipo de 01/07/10 15:3 módulo presentes en la base de datos (ver § 5.3.1)
 12. Utilice las teclas (▲ ▼) seleccione la función "Mod x ^{Mod x Instr}
- 12.Utilice las teclas (▲,▼), seleccione la función "Mod. x Instr" y utilice las teclas (◀,►) para insertar el número de módulos del stringa. El número máximo es 50
- modulos del stringa. El numero maximo es 50
 13.Utilice las teclas flecha (▲, ▼), seleccione el texto "Años serv" y utilice las teclas flecha (◀, ►) para seleccionar el número de años de servicio de la instalación/string/campo FV desde su instalación (ver el § 6.2.3). El valor máximo configurable es 25.0 (0.5 = 6 meses)
- 14.Utilice las teclas flecha (▲,▼), seleccione la función "Temp" y utilice las teclas flecha (◀, ►) para seleccionar el tipo de medida de la temperatura del módulo entre la modalidad:
 - ➤ "Auto" → medida automática efectuada en función del valor medido de la tensión en vacio de los módulos (método recomandado)
 - ➤ Manual → inserción por parte del usuario del valor de la temperatura del módulo en el campo "Valor" correspondiente
 - > Aux \rightarrow medida de la temperatura con sonda
- 15.Utilice las teclas flecha (▲, ▼), seleccione la función "Start" y utilice las teclas flecha (◀, ►) para seleccionar el tipo de activació de la medida entre las modalidades:
 - Auto" → prueba activada automáticamente por el instrumento en presencia de una tensión de entrada estable por alrededor de 1s y valor entre el rango de medición (vea § 10.2)
 - ➤ "Manual" → prueba activada por el usuario a la presión de la la tecla GO/STOP
- 16.Pulse **SAVE** para guardar las selecciones efectuadas o bien **ESC/MENU** para salir sin guardar

WHT°

- 17.Monte el eje sobre el disco del accesorio M304 (inclinómetro) en dotación y apóyelo sobre la planta del módulo. Verifique que la sombra del eje se proyecta sobre el disco dentro del "cerco concéntrico límite" interno del mismo disco (ver Fig. 78) En caso contrario el ángulo entre los rayos solares y la superficie del módulo es demasiado elevado y por tanto la medida efectuada por el instrumento NO es conveniente. Repita la operación en otro momento del día.
- 18. Fije el soporte al módulo utilizando los tornillos en dotación y monte la célula de referencia sobre él, si es posible con terminales de salida hacia abajo. Rote la célula hasta apoyarla sobre la aleta presente sobre el soporte con el fin de posicionarlo exactamente paralelo al plano del módulo y fíjelo después a través de los tornillos
- 19. Conecte la salida de la célula, correspondiente al tipo de módulo en prueba, a la entrada **PYRA/CELL** del SOLAR-02 utilizando el cable en dotación a la misma célula.
- 20.Conecte, si es utilizado, el sensor de temperatura a la entrada **TEMP** del SOLAR-02 al módulo bajo una célula utilizando cinta adhesiva
- 21.Conecte el instrumento al módulo/stringa en prueba como muestra la siguiente Fig. 9 En particular conecte el polo Negativo en la salida del módulo/stringa a los terminales P1, C1 y el polo Positivo en la salida del módulo/stringa a los terminales P2, C2. En el modo de activación "Auto" se recomienda el uso del accesorio opcional KITKELVIN

Fig. 8: Posicionamiento inclinómetro M304

Fig. 9: Conexionado del instrumento al módulo/stringa FV

- 22. Después del conexionado en la instalación, el instrumento muestra en tiempo real los valores de:
 - Vdc = tensión CC de salida del módulo/stringa
 - Irr = irradiación medida por la célula de referencia
 - Módulo = tipo de módulo actualmente seleccionado
 - Temp = modo de medida de la temperatura del módulo
 - Tc = temperatura del módulo FV. Este campo presenta una de las siguientes indicaciones en función de la modalidad de medida de la temperatura seleccionada:
 - AUTO: mod. medida Temp. Automática
 - Número: mod. medida Temp. MAN o AUX
 - "- -": mod. AUX con sonda no conectada
 - Start = modo de activación de la medida
 - El símbolo Linh fijo (no intermitente) que indica la presencia de un conexionado estable con SOLAR-02

ATENCIÓN Al pulsar la tecla GO/STOP el instrumento puede mostrar distintos mensajes de error (ver § 6.3) y, por este motivo, no se efectuará la prueba. Controle y elimine las causas de los problemas antes de proseguir con la prueba

- 23.Pulse la tecla GO/STOP (en modo de activación Manual) 01/07/10 15:34:26 para activar la prueba. En caso de ausencia de Vdc = condiciones de error, el instrumento muestra el mensaje Irr "Medida en curso..." durante algún segundo en función de la potencia en examen Tc =
- 24. Al termino de la prueba, el instrumento incluye los valores de los parámetros (referidos todos a un sólo módulo a las condiciones STC) como muestra la siguiente pantalla además del resultado de la prueba (ver § 6.2.3) en base a los cálculos efectuados automáticamente relativos a:
 - Translación de la curva I-V a las condiciones STC
 - Verificación de la tolerancia % de la potencia máxima declarada por el constructor
- 25. Pulse ENTER para la visualización de los resultados de medida sea en forma numérica que gráfica referido en OPC y STC (ver § 6.2.3)
- 26.Utilice la tecla flecha ▶ para la Selección de la tabla o del gráfico correspondiente
- 27. Pulse la tecla SAVE para guardar el resultado de la prueba en la memoria (ver el § 7.2) o la tecla ESC/MENU para salir de la pantalla sin guardar
- 28.El modo de activación "Auto" requiere la desconexión y conexión de los terminales de prueba para iniciar automáticamente una nueva medida

01/07/	10	15:34:26				
Vdc	=	367	V			
lrr	=	1045	W/m2			
Тс	=	45	°C			
Módulo: SUNPOWER 210 Temp: Auto Start: Manual						

Selección I – V Inil

Medida en curso						
Selección I - V						
01/07/10	15:34:	26				
Voc Vmpp Impp Isc Pmax FF DPmax	= = = = =	15.2 14.7 4.7 5.2 200 77.1 2.1	V V A W %			

367 V

45

Módulo: SUNPOWER 210

=

1045 W/m2

°C

Seleccion		I - V	
01/07/10	15:3	4:26	
Voc	=	15 2	V
Vmpp	=	14.7	v
lmpp lsc	=	4.7 5.2	A A
Pmax	=	200	Ŵ
DPmax	=	2.1	%
Tabla)	•		
Gráfico	•	– RESUL	T: OK
Selección		I - V	

RESULT @ STC – RESULT: OK

6.2.2.2. Curva I-V a través de la unidad SOLAR-02 en registro simultáneo

Esta modalidad, que prevé el registro autónomo de los parámetros de Irradiación y temperatura por parte de la unidad remota, permite la obtención de la característica I-V incluso con una distancia considerable entre el instrumento y la unidad SOLAR-02 sin la necesidad de ninguna conexión entre las dos unidades Por contra, no teniendo el instrumento la disponibilidad inmediata de los respectivos parámetros, se deberá esperar a la transferir los datos de la unidad remota a la unidad principal para poder disponer de todos los resultados disponibles

ATENCIÓN

- La máxima tensión entre las entradas P1, P2, C1 y C2 es de 1000VCC (para I-V400w y SOLAR I-Vw) o 1500VCC (para I-V500w y SOLAR I-Ve). No mida tensiones que excedan los límites expresados en el § 10.2.
- La corriente máxima tolerable por el instrumento es de 15A. No efectúe pruebas sobre stringhe de módulos FV en paralelo
- No efectúe nunca pruebas sobre módulos o stringhe FV conectados al convertidor CC/CA
- 1. Encienda el instrumento pulsando la tecla ON/OFF
- 2. Pulse la tecla MENU y controle que en "SET→ Generales → Unidad remota" sea Configurado SI
- Controle que el valor de umbral configuración en "SET→ Generales → Irradiación → Irr min I-V" sea coherente con las medidas que se pretenden efectuar (ver § 5.1.5). Se aconseja efectuar la medida con umbral ≥ 700 W/m² en acuerdo a la normativa IEC/EN60891
- 4. Vuelva al MENU principal y seleccione la función "I-V"
- 5. Pulse la tecla ENTER, seleccione con las teclas flecha 15/05/10 15:34:26
 (▲,▼) el valor "Medida ▶"
- Utilice la tecla flecha ► para acceder al submenú interno, seleccione el valor "Caract. IV" y confirme con ENTER para activar la pantalla inicial de la obtención de la característica IV

Vdc	= 0.0) V	
Irr	=	0 W/n	า2
Tc	=	°C	
Modulo	: SUNPOV	VER 210)
	Caract.	IV	
Conf	IV Cheo	ck	
Med			
Selecci	ón	I - V	

- 7. Encienda la unidad remota SOLAR-02 y espere que aparezca el mensaje "Conexión radio activa"
- 8. Controle el estado de las pilas del SOLAR-02 (el símbolo " NO debe ser visualizado)
- Controle que los valores de configuración del SOLAR-02 de la sensibilidad y coeficiente de temperatura sean coherentes con el tipo de célula de referencia utilizada en función del tipo de módulo/stringa en examen (ver manual de instruccioneso SOLAR-02).

-ŴHT°

- 10. Sobre el visualizador aparece la siguiente pantalla la cual: 01/07/10 15:34:26
 - Vdc = tensión CC de salida del módulo/stringa
 - Irr = irradiación medida de la célula de referencia en dotación
 - Módulo = tipo de módulo actualmente seleccionado
 - Temp = modo de medida de la temperatura del módulo
 - Tc = temperatura del módulo FV. Este campo presenta una de las siguientes indicaciones en función de la modalidad de medida de la temperatura seleccionada:
 Selección
 - ➢ AUTO → modo medida Temp. Automático
 - ➢ Número → modo medida Temp. MAN o AUX
 - ➤ " - " → mod. AUX con sonda no conectada
 - Start = modo de activación de la medida
 - El símbolo 1 fijo (no intermitente) que indica la presencia de SOLAR-02
- 11. Pulse la tecla ENTER, seleccione la función 01/07/10 15:34:26
 "configuración" y confirme con ENTER para acceder a la pantalla siguiente en el cual es posible efectuar las configuraciones sobre la selección del tipo de módulo y sobre el número de módulos del cual está constituida el stringer objeto de la prueba
- 01/07/10 15:34:26 Vdc = 0.0 V Irr = - - W/m2 Tc = Auto °C Módulo: DEFAULT Temp: Auto Start: Manual Selección

l	Vdc	=		0.	0 \	/		
;	lrr	=	-	-	-	W/	′m2	
	Тс	=	-	-	-	°C		
	Acti	va	r	Re	g.			
	Conf	ig	ur	a c	iό	n		
	Medi	сi	ón		•			
	Seleco	ción			I - `	V		
2	01/07/	/10	15	·34·	26			

- 12. Utilice las teclas flecha (◀, ►) para seleccionar el tipo de módulo (ver § 5.3.1)
- Utilice las teclas flecha (▲,▼), seleccione la función "Mod. x Instr" y utilice las teclas flecha (◀, ►) para insertar el número de módulos del stringa en prueba. El número máximo de módulos configurable son 50

01/07/10 1	5:34:26	
Tipo : ∢ SI	UNPOWER 210	
Mod. x Ins	str: 15	
Años serv	: 4.5	
Temp	: Auto	
Start	: Manual	
Pmax	= 210	
Voc	= 47.70	
Vmpp	= 40.00	
lsc	= 5.75	
lmpp	= 5.25	
	CONF	IG

- 14. Utilice las teclas flecha (▲,▼), seleccione el texto "Años serv" y utilice las teclas flecha (◀, ►) para seleccionar el número de años de servicio de la instalación/string/campo FV desde su instalación (ver el § 6.2.3). El valor máximo es 25.0 (0.5 = 6 meses)
- 15. Utilice las teclas flecha (▲, ▼), seleccione la función "Temp" y utilice las teclas (◀, ►) para seleccionar el tipo de medida de la temperatura del módulo entre la modalidad:
 - ➤ "Auto" → medida automática efectuada en función del valor medido de la tensión en vacio (método recomandado)
 - ➤ Manual → inserta por parte del usuario el valor de la temperatura del módulo en el campo "Valor" correspondiente
 - > Aux \rightarrow medida de la temp. con sonda auxiliar
- 16. Utilice las teclas flecha (▲, ▼), seleccione la función "Start" y utilice las teclas flecha (◀, ►) para seleccionar el tipo de activació de la medida entre las modalidades:
 - > Auto" → prueba activada automáticamente por el instrumento en presencia de una tensión de entrada estable por alrededor de 1s y valor entre el rango de medición (vea § 10.2)
 - > "Manual" \rightarrow prueba activada por el usuario a la presión de la la tecla GO/STOP

-**Mht**

- 17. Pulse **SAVE** para guardar la selección efectuada o bien **ESC/MENU** para salir sin guardar
- 18. Monte el soporte sobre el disco del accesorio M304 (inclinómetro) en dotación y apóyelo sobre la planta del módulo. Verifique que la sombra del soporte no se proyecta sobre el disco y caiga dentro del "cerco concéntrico límite" interno al mismo disco (ver Fig. 10). En caso contrario el ángulo entre los rayos solares y la superficie del módulo es muy elevado y muy distinto de las condiciones de prueba declaradas por el fabricante, por tanto las medidas efectuadas por el instrumento NO son consideradas correctas y es necesario repetir las operaciones en otro momento del día
- 19. Fije el soporte al módulo utilizando los tornillos en dotación y monte la célula de referencia sobre él, si es posible **con terminales de salida hacia abajo**. Rote la célula hasta apoyarla sobre la aleta presente sobre el soporte con el fin de posicionarlo exactamente paralelo al plano del módulo y fíjelo después a través de los tornillos
- 20. Conecte a la salida de la célula, correspondiente al tipo de módulo en prueba, a la entrada **PYRA/CELL** del SOLAR-02 utilizando el cable en dotación a la misma célula.
- 21. Conecte, si lo utiliza, el sensor de temperatura a la entrada **TEMP** del SOLAR-02 al módulo bajo una célula utilizando cinta adhesiva
- 22. Conecte el instrumento al módulo/stringa en prueba como muestra en la siguiente Fig. 11. En particular conecte el polo Negativo en la salida del módulo/stringa a los terminales P1, C1 y el polo Positivo en la salida del módulo/stringa a los terminales P2, C2. En el modo de activación "Auto" se recomienda el uso del accesorio opcional KITKELVIN

Fig. 11: Conexionado del instrumento al módulo/stringa FV

-MHT°

- 23. Después del conexionado de la instalación, el instrumento 01/07/10 muestra en tiempo real los valores de:
 - Vdc = tensión CC de salida del módulo/stringa
 - Irr = irradiación medida por la célula de referencia en dotación
 - Módulo = tipo de módulo actualmente seleccionado
 - Temp = modo de medida de la temperatura del módulo
 - Tc = temperatura del módulo FV. Este campo presenta una de las siguientes indicaciones en función de la modalidad de medida de la temperatura seleccionada:
 - AUTO: mod. medida Temp. Automática
 - Número: mod. medida Temp. MAN o AUX
 - "---": mod. AUX con la sonda no conectada
 - Start = modo de activación de la medida
 - el símbolo **Lini** fijo (no intermitente) que indica la presencia de un conexionado estable con la unidad Remota SOLAR-02
- 24. Pulse la tecla ENTER, seleccione la función "Activar Reg." y confirme con ENTER. Sobre el visualizador del instrumento aparecerá el mensaje "Unidad remota en registro...". A este punto es posible iniciar y efectuar la obtención de la característica I-V quedando los resultados completos disponibles SÓLO DESPUÉS de haber detenido el registro sobre el SOLAR-02 y recibido de él los datos
 24. Pulse la tecla ENTER, seleccione la función "Activar 01/07/10 15:34:26
 Vdc = 0.0
 Irr = - Tc = - Activar Reg.

01/07	/10	15.24.06				
01/07	10	15:34:26				
Vdc = 367 ∨						
lrr	=	1045	W/m2			
Тс	=	45	°C			
Módulo: SUNPOWER 210 Temp: Auto Start: Manual						
Selec	ción	1-	V Luil			

ATENCIÓN

Al pulsar la tecla **GO/STOP** el instrumento puede mostrar distintos mensajes de error (ver § 6.3) y, por este motivo, no se efectuará la prueba. Controle y elimine, si es posible, las causas de los problemas antes de proseguir con la prueba

25. Pulse la tecla GO/STOP (en modo de activación Manual)
 para activar la prueba. En caso de ausencia de condiciones de error, el instrumento muestra el mensaje
 "Medida en curso..." durante algún segundo en función de la potencia en examen

01/07/10 15:34:26
Vdc = 367 ∨
Irr = W/m2
Tc = Auto °C
Módulo: SUNPOWER 210
Medida en curso
Selección I - V

26. Al termino de la prueba, coherentemente con lo descrito en los puntos anteriores, el instrumento visualiza el mensaje "Datos STC disponibles sólo después de Stop registro", y puede incluir los valores de los parámetros en las condiciones OPC.

01/07/10	1	5:34:26	
Voc Vmpp Impp Isc Pmax FF Irr Tc		15.2 14.7 4.7 5.2 200 77.1 Auto	V A A W % W/m [∠]
Ν	ΛIΕ	DIDA @ OP	С
Selecció	า	I - V	

Voc 15.2 V 14.7 V Vmpp = 4.7 5.2 A Impp Â lsc 200 = % W/m⁴ lrr Tabla Gráfico Selección I - V

15/05/10 15:34:26
Vdc = 0.0 ∨
Irr = W/m2
Tc = Auto °C
Fin Registro
Configuración
Medición 🕨
Selección I - V

- 27. Pulse **ENTER** para la visualización de los resultados de 01/07/10 15:34:26 medida sea en forma numérica que gráfica (ver § 6.2.3 para el significado de los parámetros)
- 28. Utilice la tecla flecha ► para la Selección de la tabla o del gráfico correspondiente
- 29. Pulse la tecla **SAVE** para guardar el resultado de la prueba en la memoria del instrumento (ver el § 7.2) o la tecla **ESC/MENU** para salir de la pantalla sin guardar y volver a la pantalla principal de medida
- 30. El modo de activación "Auto" requiere la desconexión y conexión de los terminales de prueba para iniciar automáticamente una nueva medida
- 31. Al término de la obtención I-V, pulse la tecla ENTER, seleccione la función "Fin Registro" y confirme con ENTER. Sobre el visualizador del instrumento aparecerá el mensaje "Espere..." y " Resultados STC disponibles en Memoria"
- 32. A este punto , para la medida que disponga de valores de irradiación por encima del umbral y estables, serán disponibles en memoria también los resultados STC.
- 33. Sobre el instrumento aparece en el visualizador el mensaje "Descarga datos" y al mismo tiempo el mensaje "Send" aparece en el visualizador de la unidad SOLAR-02 indicando la transferencia de los valores de irradiación y (eventualmente) temperatura de la célula sobre la unidad principal
- 34. Al termino de la transferencia el instrumento asociará **automáticamente** los valores medidos de irradiación (detectado con PI = 5s) de cada medida de característica I-V efectuada y, correspondientemente, calcular los resultados trasladados a las condiciones STC y el resultado SI / NO de cada medida. Los resultados completos se pueden rellamar como es describido en § 7.3.2
- 35. Para la interpretación de los resultados de medida ver el § 6.2.3

6.2.3. Interpretación de los resultados de medida

Los parámetros medidos por el instrumento tienen el siguiente significado:

Parámetro	Descripción
Pmax	Potencia máxima del módulo medido por el instrumento
DPmax	Desviación % de la potencia máx. medida por la potencia nominal (@ STC)
FF	Fill Factor %
Voc	Tensión en vacio
Vmpp	Tensión en el punto de máxima potencia
Isc	Corriente de cortocircuito
Impp	Corriente en el punto de máxima potencia

Tabla 2: Listado parámetros medidos por el instrumento

Donde:

$$DP_{\%}^{MAX} = 100 \times \frac{P^{MAX} - P_{Age}^{Nom}}{P_{Age}^{Nom}} \Rightarrow \text{ parámetro de control que define el resultado}$$
$$P_{Age}^{Nom} = P^{Nom} \times \left(1 - \frac{A\tilde{n}osServ \times DegrA\tilde{n}o\%}{100}\right) \qquad P^{Nom} = \text{ potencia nominal del módulo}$$

FF = 100 x [(Vmpp x Impp) / (Voc x Isc)] = Fill Factor \rightarrow representa la clase de "rendimiento" del módulo/grupo módulos confrontando la potencia máxima medida y la potencia en vacio

El instrumento muestra los siguientes resultados de medida:

Tipo Result	Condiciones	Nota
ок	- $Tol^{(-)} + \varepsilon^{Strum} \le \varepsilon^{Mis} \le Tol^{(+)} - \varepsilon^{Strum}$	(1)
OK*	La anterior relación (1) no está verificada aunque de todos modos: - $Tol^{(-)} \le \varepsilon^{Mis} \le Tol^{(+)}$	(2)
NO OK*	No son verificadas las (1) y (2) aunque de todos modos: - $Tol^{(-)} - \varepsilon^{Strum} \le \varepsilon^{Mis} \le Tol^{(+)} + \varepsilon^{Strum}$	(3)
NO OK	Ninguna de las relaciones (1), (2) y (3) está verificada	(4)

donde:

 $Tol^{(-)} = Tol^{(-)}$ (%)* $Pnom \rightarrow$ Tolerancia Negativa, en valor absoluto, declarada $Tol^{(+)} = Tol^{(+)}$ (%)* $Pnom \rightarrow$ Tolerancia Positiva, en valor absoluto, declarada

 $\varepsilon^{Mis} \rightarrow$ DPmax que define el alejamiento entre los valores medidos y los declarados

 ε^{Strum} \rightarrow Error absoluto de la cadena de medida (instrumento + transductor en el punto de medida) considerando el error % y los dígitos declarados.

(1) $OK \rightarrow Resultado de la prueba positiva considerando el error instrumental en la medida.$ $(2) <math>OK^* \rightarrow Resultado que puede ser considerado positivo sin considerar el error instrumental en la medida$

(3) NO OK* \rightarrow Resultado de la prueba negativa sin considerar el error instrumental en la medida

(4) NO OK \rightarrow Resultado de la prueba negativa considerando el error instrumental en la medida.

6.3. TEST RÁPIDO MÓDULOS Y STRINGAS FV (IVCK)

6.3.1. Generalidades

Esta función ejecuta un Test rápido de un panel/stringa midiendo solamente la Tensión en vacío y la corriente de cortocircuito de acuerdo a lo previsto por la norma IEC/EN 62446. Podrán luego ser medidos (utilizando las respectivas sondas) también los valores de Irradiación y Temperatura de los módulos.

La medida de Irradiación podrá ser realizada solamente mediante una de las siguientes modalidades:

- Sensor Irrad. conectado directamente al I-V400w, I-V500w, SOLAR I-Vw, SOLAR I-Ve
- Sensor Irrad. conectado a SOLAR-02 en conexión RF con el I-V400w, I-V500w, SOLAR I-Vw, SOLAR I-Ve

Las medidas de Irradiación se efectúan siempre en tiempo real, no es por lo tanto posible lanzar un registro "remoto" de los valores de irradiación mediante el SOLAR-02

Si el umbral de Irradiación mínimo IV (vea § 5.1.5) I-V se define:

- = 0 → el instrumento no controla la presencia de la Celda, las variaciones de irradiación, el numero de los módulos y no visualiza mensajes de error si no es posible calcular los valores trasladables en STC de Voc y Isc. Esta modalidad se indica para ejecutar una sesión de Test de forma extremadamente rápida sobre un número elevado de stringas.
- > 0 (aconsejado > 700) → el instrumento ejecuta todos los controles previstos para la prueba I-V, gestiona todas las condiciones y los mensajes de error de la prueba I-V (núm. Mod. equivocado, Temp. Fuera de rango, presencia celda, Irr. Min, etc...) y calcula los valores en STC de Voc e Isc. Esta modalidad se recomienda si se pretende ejecutar pruebas más profundas sobre los módulos/stringas en examen.

La página de los resultados contendrá en general:

- La descripción del modulo en uso
- Los valores de Irradiación y temperatura (si estuvieran disponibles)
- Los valores medios de Voc e lsc calculados como media de los correspondientes valores a OPC sobre las últimas 10 pruebas memorizadas y guardadas. Si el número de las pruebas es < 10 la media se calcula sobre el número de las pruebas disponibles. La prima prueba mostrará guiones en el campo "valores medios" ya que no hay pruebas precedentes sobre las que calcular la media.
- Los valores de Voc y lsc medidos a OPC y los eventuales éxitos parciales (presentes sólo si los valores STC no están disponibles) obtenidos en comparación con los valores medios.
- Los valores de Voc e lsc calculados en STC (si estuvieran disponibles) y los eventuales éxitos parciales obtenidos por comparación de los valores calculados en STC con los nominales (insertados en el DB de los módulos).
- El éxito total de la prueba (OK (NO). El éxito total se calculará sobre la base de los éxitos parciales obtenidos:
 - Sobre la base de los éxitos parciales en STC (si estos estuvieran disponibles)
 - Sobre la base de los éxitos parciales a OPC (si los valores STC no están disponibles)

El instrumento no mostrará ningún éxito total si no estuviera disponible ningún éxito parcial.

En el caso de éxito negativo se aconseja ejecutar una obtención de la característica I-V (vea § 6.2) con el fin de profundizar el análisis sobre el modulo/stringa examinado.

6.3.2. Configuraciones preliminares

- 1. Encienda el instrumento pulsando la tecla ON/OFF.
- 2. Pulse la tecla **ESC/MENU** para visualizar el menú principal
- 3. Seleccione el valor "I-V" y pulse ENTER para acceder a la sección de medida de las prestaciones de los módulos FV
- 4. En el caso de que la modalidad de corriente non sea ya IVCK, pulse la tecla ENTER, seleccione con las teclas flecha (▲,▼) el valor "Medida ▶". Utilice la tecla flecha ▶ para acceder al submenú interno, seleccione el valor "IV Check" y confirme con ENTER para activar la pantalla inicial del Texto rápido IVCK
- 5. Pulse la tecla **ENTER**, seleccione el valor 15/05/10 15:34:26 **"Configuraciones**" y confirme con **ENTER** para acceder Modulo: a la pantalla siguiente en la cual es posible ejecutar las T_{C (AUTO)} configuraciones relativas al tipo de modulo y el numero VocMed@OPC de módulos que constituyen la stringa en examen

or	15/05/10 15:34:26		
٥r	Modulo:	SUNPWF	R210
	Irr	980	W/m2
iS	Tc (AUTO)	49	°C
٢O	VocMed@OPC	647	V
	lscMed@OPC	5.43	A
	Voc@OPC	646	V
	lsc@OPC		A
	Reset Media		V
	Configuracion		A
	Medida 🕨		
	Selección IN	/CK	

- Utilice las teclas flecha (◀, ►) para seleccionar el tipo de modulo entre los presentes en la base de datos interna del instrumento (vea § 5.3.1)
- Utilice las teclas flecha (▲,▼), seleccione el valor "Mod. x Str" y utilice las teclas flecha (◀, ►) para ingresar el numero de módulos de la stringa en prueba. El número máximo de módulos configurable es 50
- Utilice las teclas flecha (▲,▼), seleccione el valor "Temp" y utilice las teclas flecha (◀, ►) para elegir el tipo de medida de la temperatura en las modalidades:
 - ➤ "Auto" → medida automática ejecutada en función del valor medido de la tensión en vacío de los módulos (método recomandado)
 - ➤ Manuales → inserción por parte del usuario del valor conocido de la temperatura del modulo en el campo "Valor" correspondiente
 - > Aux \rightarrow medida de la temperatura con sonda
- Utilice las teclas flecha (▲,▼), para seleccionar el valor "Tol Voc" y "Tol Isc" y utilice las teclas flecha (◀, ►) para configurar los valores de las tolerancias para la Tensión en vacío (Voc) y corriente de cortocircuito (Isc) proporcionadas por el fabricante del modulo (valores admitidos: +0% ... +25%). Note que junto con dichos valores y también indicada entre paréntesis la incertidumbre del instrumento que se sumará al valor despachado para mostrar éxito (OK/NO)
- 10. Utilice las teclas flecha (▲, ▼), seleccione la función "Start" y utilice las teclas flecha (◀, ►) para seleccionar el tipo de activació de la medida entre las modalidades:
 - ➤ Auto" → prueba activada automáticamente por el instrumento en presencia de una tensión de entrada estable por alrededor de 1s y valor entre el rango de medición (vea § 10.2)
 - > "Manual" → prueba activada por el usuario a la presión de la la tecla GO/STOP
- 11. Pulse **SAVE** para guardar las selecciones realizadas o bien **ESC/MENU** para salir

15/05/10	15::	34:26		
Tipo : • Sl	JNF	OWER	210	>
Mod. x Str :	15			
Temp	: N	lanual		
Valore	: 5	1°C		
Tol Voc	:	3%		(+4%)
Tol Isc	:	3%		(+4%)
Start	: N	lanual		
Voc	=	64.7		%
lsc	=	6.20		%
			CO	NF

6.3.3. Test Rápido IVCK sin medida de Irradiación

 La máxima tensión entre las entradas P1, P2, C1 y C2 es de 1000V CC (para I-V400w y SOLAR I-Vw) o 1500V (para I-V500w y SOLAR I-Ve). No mida tensiones que excedan los límites expresados en § 10.2

ATENCIÓN

- La corriente máxima tolerable por el instrumento es de 15A. No efectúe pruebas sobre stringas de módulos FV en paralelo
- No ejecute nunca pruebas sobre módulos o stringas FV conectados al convertidos CC/CA
- 1. Encienda el instrumento pulsando la tecla ON/OFF
- 2. Controle que la unidad remota SOLAR-02 no esté seleccionada (vea § 5.1.4 configuración NO)
- 3. Controle que el valor de Irradiación mínimo configuración en la sección "Irradiación" (vea § 5.1.5) sea igual a **0**.
- 4. Vuelva al MENU principal y seleccione el valor "I-V"
- Seleccione el valor "I-V" y pulse ENTER para acceder a la sección de medida de las prestaciones de los módulos FV. En general en la selección del valor I-V en el menú general el instrumento muestra automáticamente la última modalidad utilizada (I-V o IVCK).
- 6. En el caso de que la modalidad de corriente no sea ya I5/05/10 15:34:26
 IVCK, pulse la tecla ENTER, seleccione con las teclas flecha (▲,▼) el valor "Medida ▶". Utilice la tecla flecha
 ▶ para acceder al submenú interno, seleccione el valor "IV Check" y confirme con ENTER para activar la pantalla inicial del Texto rápido IVCK.

- 7. Controle las configuraciones preliminares según lo descrito en el § 6.3.2
- Conecte el instrumento al modulo/stringa en prueba como se muestra en la siguiente figura. En particular conecte el polo Negativo en la salida del modulo/stringa en los terminales P1, C1 y el polo Positivo en la salida del modulo/stringa en los terminales P2, C2. En el modo de activación "Auto" se recomienda el uso del accesorio opcional KITKELVIN

Leyenda:

- P1: Cable Negro
- P2: Cable Azul
- C1: Cable Verde
- C2: Cable Rojo
- 1: Modulo o stringa FV

Fig. 13: Conexión al modulo/stringa FV para pruebas IVCK sin medida de Irradiación.

-ŴHT°

Selección

Selección

IVCK

IVCK

- 9. En la pantalla inicial de la modalidades IVCK se visualizan 15/05/10 15:34:26 Modulo: SUNPWR210
 - W/m2 lrr. Tc (AUTO) °C ____ Modulo en uso VocMed@OPC 647 V Los valores medios de Voc e Isc en las condiciones liscMed@OPC 5.43 A V Voc@OPC 646 OPC. lsc@OPC А ___ El valor de la Voc medida en las condiciones OPC Voc@STC V --lsc@STC А

ATENCIÓN

Pulsando la tecla **GO/STOP** el instrumento puede mostrar distintos mensajes de error (vea § 6.4) y, por efecto de estos no ejecutar el test. Controle y elimine, si fuera posible, las causas de los problemas antes de proseguir con el test

10. Pulse la tecla GO/STOP (en modo de activación Manual)15/05/10 15:34:26 para iniciar el test. En caso de ausencia de condiciones de Modulo: SUNPWR210 W/m2 error, el instrumento visualiza la pantalla de los resultados_{Tc (AUTO)} ---°C --del tipo indicado al lado. En esta se muestran: VocMed@OPC V 647 IscMed@OPC A ➢ El modulo en uso 5.43 Los valores medios de Voc y Isc en las condiciones OPC Isc@OPC V OK 647 5.35 А OK > Los valores de Voc e lsc medidos en el OPC y los voc@stc V relativos éxitos parciales obtenidos por comparación con lisc@STC A ___ ÉXITO: OK los valores medios.

En general:

$$\begin{aligned} \dot{E}xito \, Voc_{@\,OPC} &= OK \quad \text{si} \quad 100 \times \left| \frac{VocMed_{@\,OPC} - Voc_{@\,OPC}}{VocMed_{@\,OPC}} \right| &\leq (\text{Tol Voc} + 4\%) \\ \dot{E}xito \, Isc_{@\,OPC} &= OK \quad \text{si} \quad 100 \times \left| \frac{IscMed_{@\,OPC} - Isc_{@\,OPC}}{IscMed_{@\,OPC}} \right| &\leq (\text{Tol Isc} + 4\%) \end{aligned}$$

- El valor total de los éxitos:
 - OK: si todos los éxitos OPC son OK,
 - NO si uno de los éxitos OPC es NO
- 11. Pulse la tecla **SAVE** para guardar el resultado del test en la memoria del instrumento (vea el § 7.2) o la tecla **ESC/MENU** para salir de la pantalla sin guardar y volver a la pantalla principal de medida
- 12. El modo de activación "Auto" requiere la desconexión y conexión de los terminales de prueba para iniciar automáticamente una nueva medida

NOTA sobre los VALORES MEDIOS visualizados

En la página de los resultados aparecen los valores medios de Voc e lsc. Tales valores contienen los valores medios de Voc e lsc en las condiciones OPC calculadas como media sobre las últimas 10 pruebas anteriormente memorizadas. Si el usuario ha ejecutado y memorizado un numero de pruebas <10 o bien ha reseteado los valores medios (vea § 6.3.5) la media visualizada en el curso de la prueba N+1 serán los calculados sobre los N valores disponibles.

6.3.4. Test Rápido IVCK con medida de Irradiación

ATTENZIONE

 La máxima tensión entre las entradas P1, P2, C1 y C2 es de 1000VCC (para I-V400w y SOLAR I-Vw) o 1500VCC (para I-V500w e SOLAR I-Ve). No mida tensiones que excedan los límites expresados en este manual

- La corriente máxima tolerable por el instrumento es de 15A. No efectúe pruebas sobre stringas de módulos FV en paralelo
- No ejecute nunca pruebas sobre módulos o stringas FV conectadas al inverter CC/CA
- 1. Encienda el instrumento pulsando la tecla ON/OFF
- 2. La medida de Irradiación podrá ser realizada solamente mediante las dos siguientes modalidades:
- Medida mediante Celda conectada al I-V400w, I-V500w, SOLAR I-Vw o SOLAR I-Ve
- Medida mediante Celda conectada a SOLAR-02 en conexión RF con el I-V400w, I-V500w, SOLAR I-Vw o SOLAR I-Ve

Controle que la configuración de la unidad remota SOLAR-02 sea coherente con el tipo de medida que se quiere realizar (vea el § 5.1.4).

- 3. Controle el valor de Irradiación mínimo en la configuración de la sección "Irradiación" (ver § 5.1.5).
- 4. Vuelva al MENU principal y seleccione el valor "I-V"
- Seleccione el valor "I-V" y pulse ENTER para acceder a la sección de medida de las prestaciones de los módulos FV. En general en la selección del valor I-V en el menú general el instrumento presenta automáticamente la última modalidad (IV o IVCK)
- 6. En el caso en que la modalidad de corriente no sea ya 15/0
 IVCK, pulse la tecla ENTER, seleccione con las teclas flecha (▲,▼) el valor "Medida ▶". Utilice la tecla flecha
 ▶ para acceder al submenú interno, seleccione el valor "IV Check" y confirme con ENTER para activar la pantalla inicial del texto rápido IVCK

а	15/05/1	0 15:34:2	26	
s	Vdc	= 0.0	0 V	
a r	Irr	=	0 W/m2	
а	Тс	=	°C	
	Modulo	: SUNPOV	WER 210	
		Caract. IV	/	
	Conf	IV Check		
	Med			
	Selecci	ón	I - V	

- 7. Controle las configuraciones preliminares según lo descrito en el § 6.3.2
- 8. Conecte el instrumento al modulo/stringa en prueba como se muestra en la siguiente figura. En particular conecte el polo Negativo en la salida del modulo/stringa en los terminales P1, C1 y el polo Positivo en la salida del modulo/stringa en P2, C2. En el modo de activación "Auto" se recomienda el uso del accesorio opcional KITKELVIN

Fig.14:Conexiones para pruebas IVCK con medida directa de Irrad/Temp

Fig.15: Conexiones para pruebas IVCK con medida de Irrad/Temp mediante SOLAR-02

Leyenda:

- P1: Cable Negro
- P2: Cable Azul
- C1: Cable Verde
- C2: Cable Rojo
- 1: Modulo o stringa FV 2: Celda 3: Sens. Temp (si requerido)

-WHT°

Voc@STC

А

V

А

Tuij

IVCK

787

5.72

D: OK

VCK

V OK

A OK

- 9. Conecte las sondas de Irradiación y la sonda de Temperatura (si fuera necesario) de acuerdo con las figuras precedentes (vea el § 6.3.2).
- 10. En la pantalla inicial de la modalidad IVCK se muestran los 15/05/10 15:34:26 valores de: Modulo: SUNPWR210 Irr. 980 W/m2
 - Modulo en uso
 Irradiación (proveniente de la medida directa o delvocMed@OPC 647 v SOLAR_02 en conexión RF)
 SOLAR_02 en conexión RF)
 - El valor de la Temperatura (si el mod. es MAN o AUX) y lsc@OPC la relativa mod. de medida. Si el mod. AUTO →"- - -" Voc@STC
 - Los valores medios de Voc y lsc en las condiciones lsc@STC OPC
 Selección

Se muestran los valores adquiridos en tiempo real de:

- Tensión en vacío
- > El eventual símbolo del conexión RF con SOLAR-02

ATTENZIONE

Con la pulsación de la tecla **GO/STOP** el instrumento puede mostrar distintos mensajes de error (vea § 6.4) y, por efectos de estos, no ejecutar el test. Controle y elimine, si fuera posible, las causas de los problemas antes de continuar con el test

11. Pulse la tecla GO/STOP (en modo de activación Manual)15/05/10 15:34	:26	
para iniciar el test. En caso de ausencia de condiciones de	Modulo:	SUNPW	/R210
error el instrumento visualiza la pantalla de los resultados	Irr	932	W/m2
	Tc (AUTO)	57	°C
con la indicación de:	VocMed@OPC	647	V
El modulo en uso	IscMed@OPC	5.43	Α
	Voc@OPC	647	V
	lsc@OPC	5.35	А

- > El valor de la Temperatura de las celdas
- Los valores medios de Voc y lsc en las condiciones OPC lsc@STC
- Los valores de Voc y Isc medidos en OPC
- Los valores de Voc y lsc calculados en STC y los relativos éxitos parciales obtenidos por comparación con los valores nominales

En general:

$$\begin{aligned} \dot{E}xito \, Voc_{@\,STC} &= OK \quad \text{si} \quad 100 \times \left| \frac{VocNom_{@\,STC} - Voc_{@\,STC}}{VocNom_{@\,STC}} \right| &\leq (\text{Tol Voc} + 4\%) \\ \dot{E}xito \, Isc_{@\,STC} &= OK \quad \text{si} \quad 100 \times \left| \frac{IscNom_{@\,STC} - Isc_{@\,STC}}{IscNom_{@\,STC}} \right| &\leq (\text{Tol Isc} + 4\%) \end{aligned}$$

Los valores de Voc y lsc nominales son los valores presentes en el DB del módulo interno en el instrumento (vea § 5.3)

- El valor total de los éxitos:
 - o OK: si todos los éxitos STC son OK,
 - NO si uno de los éxitos STC es NO
- 12. Pulse la tecla **SAVE** para guardar el resultado del test en la memoria del instrumento (vea el § 7.2) o la tecla **ESC/MENU** para salir de la pantalla sin guardar y volver a la pantalla principal de medida
- 13. El modo de activación "Auto" requiere la desconexión y conexión de los terminales de prueba para iniciar automáticamente una nueva medida

Voc@OPC

lsc@OPC

Config.

Medida ▶ Selección

Reset Media

646

IVCK

V

А

V

А

6.3.5. Reset Media

Si no son medidos los valores de Irradiación, el instrumento muestra un éxito comparando los valores medidos con los valores medios calculados sobre la base de las medidas anteriormente guardadas. Por lo tanto en este caso los valores medios calculados por el instrumento adquieren particular importancia.

En el caso de que se inicie una nueva sesión de medida con variaciones significativas de Irradiación o temperatura se aconseja poner a cero los valores medios de referencia para luego recalcular sobre la base de nuevas medidas.

Para resetear los valores medios realice los siguientes pasos:

1. En el interior de la modalidad IVCK, pulse la tecla ENTER, 15/05/10 15:34:26 seleccione el valor "Reset Media" y confirme con ENTER SUNPWR210 W/m2 980 Irr para poner a cero los valores medios calculados hasta ese 49 °C momento. VocMed@OPC ---V lscMed@OPC А

Los valores medios se ponen a cero inmediatamente también **modificando** y **luego guardando** uno de los siguientes parámetros

- Tipo de modulo FV
- Numero de módulos x stringa

Los valores medios no se ponen a cero si el usuario cambia de modalidad de funcionamiento (por ejemplo pasa a la obtención completa de la curva I-V para profundizar el análisis de una stringa) para luego volver a esta modalidad

6.4. LISTADO DE LOS MENSAJES SOBRE EL VISUALIZADOR

MESSAGGIO	DESCRIZIONE
Falta de tensión de entrada	Controle la tensión entre los terminales de entrada C1 y C2
Vin > 1000	Tensión CC en salida del módulo/grupo > 1000V (I-V400w, SOLAR I-Vw)
Irradiación muy baja	Valor de irradiación inferior al límite mínimo configurado
Error NTC	Eficiencia NTC interna dañada. Contacte con asistencia
Espere recalentamiento	Instrumento sobrecalentado. Espere antes de seguir pruebas
Memoria Ilena	Alcanzado el límite de memoria. Descargue los datos al PC
l iempo impulso muy largo	Condiciones anomalas. Repita la prueba con + módulos en serie
Corriente muy baja	Valor de corriente medida interior al minimo detectable
Error Insercion Vcc	Controle la tension entre los terminales de entrada CT y C2
Base de datos llena	El número de los módulos insertados en la BD interna es > 30
Datos @ STC no disponibles	El instrumento no ha calculado los datos de las condiciones STC
Irradiación muy alta	Valor de irradiación mavor al máximo medible
Datos no disponibles	Error genérico. Repita la prueba
Corriente Isc muy alta	Corriente de salida mayor del máximo medible
Fecha errónea	Inserte una fecha/hora de sistema coherente
Error 1/2/3/4/5: contacte asistencia	Contacte con asistencia
Error EEPROM : cont. asistencia	Contacte con asistencia
Error FLASH : cont. asistencia	Contacte con asistencia
Error RTC : cont. asistencia	Contacte con asistencia
Pilas agotadas	Nivel pilas bajo. Inserte nuevas pilas al instrumento
Error: Impp >= Voc	Controle las configuraciones del módulo en la BD
Error: V/mpn * Impn >= Pmax	Controle las configuraciones del módulo en la BD
Error: alpha beta Gamma Toll muv alto	Controle la configuración del módulo en la BD
Módulo presente	Nombre del módulo insertado va presente en la BD
Delta-Irrad, Elevada, Repetir	Condiciones no estables de irradiación. Repita la prueba
Tensión no estable	Condiciones anómalas. Repita el test con más módulos en serie
Corriente no estable	La diferencia entre 2 valores instantáneos consecutivos de corriente son > 0.13A
Firmware no correcta	Problemas con FW interna. Contacte con la asistencia
Temp. Célula ref. > límites	Temperatura medida de la célula de referencia muy alta
Temp. Módulo > límites	Temperatura sobre el módulo por encima de máximo medible
N. módulos erróneo. Continuar?	Voc medida no coherente con el valor del número de módulos configurado
Temp. Piranóm incorrecta (ENTER/ESC)	Medida no se realizada en la célula del módulo
Unidad remota no detectada	EI SOLAR I-Vw, SOLAR I-Ve no detecta ninguna unidad SOLAR-02
Memoria agotada	Memoria del instrumento llena al pulsar la tecla GO
Tensión CA y CC invertida	Terminales C1, C2 y P1, P2 invertidas en fase a la conexión FV
Error memorización	Problemas en el acceso al área de memoria
Error RADIO: contacte asistencia	Contacte con asistencia
Error Transmision RADIO	Contacte con asistencia
Error descarga datos	Contacte con asistencia
Conexión radio activo	Establecida conevión RE con unidad remota SOLAR-02
Espere análisis datos	Descarga datos desde SOLAR-02 y espere resultado conexión EV
Configuración efectúa el análisis	Problemas sobre los datos descargados SOLAR-02. Verifique configuración
I < Lim	Corriente de salida inferior al mínimo medible
Atención: cortocircuito interno	Contacte con asistencia
Unidad remota no detectada Enter/Esc	Unidad SOLAR-02 no conectada RF en el instrumento
Unidad remota en reg.	Unidad SOLAR-02 en registro parámetros Irr/Temp
Datos STC disp. solo después stop Reg.	Termine la registro para obtener datos de STC
Datos STC disp. en memoria	Datos condición STC memorizados
Comprese la conex. P1	Compruebe para la inserción adecuada de los cables en la prueba de acceso P1
Error descarga datos SOLAR-02	SOLAR I-VW, SOLAR I-VE conliguiación para el uso del MIFFSOD. Entor descarga del SOLAR-02
SOLAR-02 no detectado. Parar Reg?	SOLAR I-Vw, SOLAR I-Ve configuración para el uso del MPP300. SOLAR-02 no detectado
MPP300 no dotoctado	SOLAR I-Vw, SOLAR I-Ve configurado para uso en combinación con MPP300. MPP300 no
SOLAR-02 no detectado	SOLAR I- configurado para uso en combinación con MPP300. SOLAR-02 no detectado
MPP300:potencia CA negativa	MPP300 ha detectado la potencia CA negativa
MPP300:Tensión CA v CC cambiada	MPP300 ha detectado Tensión CA v CC cambiada entre ellas
No alim MPP Continuar? Enter/Esc	MPP300 no ha detectado la presencia de la alim. Externa.
C1 C2 no está conectado	Controle las conexiones del instrumento en el módulo/cadena en examen
C1 C2 no conectado o fusible fundido	Controle las conexiones del instrumento y e y luego a intentar la prueba de nuevo. Si el
	problema persiste contacte con asistencia
Fusible fundido	ounitoie las conexiones del instrumento y le y luego a intentar la prueba de nuevo. Si el problema persiste contacte con asistencia
Versión idioma incorrecta	Actualizar el archivo de idiomas del instrumento
C1/C2: tensión negativa	Controle la polaridad de las conexiones
· · · · ·	•

7. CONEXIONADO DEL INSTRUMENTO AL PC

El instrumento permite la memorización de 99 resultados de prueba de conexión (sólo SOLAR I-Vw, SOLAR I-Ve) y además de 249 pruebas de medidas de característica I-V. Es también posible efectuar, en la operación de conexionado, el guardado de los valores instantáneos presentes en el visualizador. Los datos pueden ser rellamados en el visualizador y cancelados en cada momento siendo posible asociarlos (para la medida de la característica I-V) de los identificadores numéricos de referencia relativos a la instalación, al stringa y al módulo FV (máx. 255).

7.1. GUARDADO DE LAS MEDIDAS DEL CONEXIONADO FV (SOLAR I-VW, SOLAR I-VE)

- Pulse la tecla SAVE con resultado de medida presente en 01/07/10 el visualizador o para el guardado de los valores instantáneos en el visualizador. El instrumento presenta la siguiente pantalla la cual muestra el teclado virtual
- Utilice las teclas flecha (▲,▼) y (◀, ►) para insertar una breve descripción (máx. 12 caracteres) relativo al prueba efectuada
- 3. Pulse de nuevo la tecla **SAVE** para confirmar el guardado de los datos **ESC/MENU** para salir sin guardar

7.2. GUARDADO DE LAS MEDIDAS DE CURVA I-V

- Pulse la tecla SAVE con resultado de medida presente en cel visualizador. El instrumento presenta la pantalla siguiente la cual muestra las siguientes opciones:
 - La primera localización de memoria disponible ("Medida")
 - > El marcador numérico "Instalación"
 - > El marcador numérico "Grupo Mód."
 - El marcador numérico "Módulo"
 - El campo "Comentario" el usuario puede insertar una breve descripción (máx. 12 caracteres) para la instalación
- Utilice las teclas flecha (▲,▼) para la selección de las distintas opciones y utilice las teclas flecha (◀, ►) para la configuración de los valores numéricos y para el uso del teclado virtual. La modificación del campo "Comentario" es posible sólo variando el número del identificador "Instalación" insertando uno todavía no utilizado.
- 3. La pulsación de la tecla **ENTER** permite la inserción de cada carácter del nombre dígito a dígito.
- 4. Pulse nuevamente la tecla **SAVE** para completar el guardado de los datos o **ESC/MENU** para salir sin guardar

า	01/07/10 15:34:26
a	Medida : 007
	Instal : ∢010)
	Stringa : 009
e,	Módulo : 004
-	Comentario :
	INSTALACION BCN
	АВСДЕГСН 🚺 ЈКЈММОР
	Q R S T U V W X Y Z - + 0 1 2 3
	456789 SPACE DEL
а	SAVE para guardar
×	Comentario MEM

7.3. OPERACIÓN CON RESULTADOS

7.3.1. Rellamada de los resultados de pruebas FV (SOLAR I-Vw, SOLAR I-Ve)

- Pulse la tecla ESC/MENU para volver al menú principal, seleccione la opción "MEM" y pulse ENTER para entrar en la sección de la visualización de los datos memorizados. La pantalla siguiente muestra el listado de las pruebas guardados en memoria del instrumento en el cual es presente el listado de las pruebas guardadas
- Utilizando las teclas flecha (▲,▼) y la tecla flecha ► seleccione la función "Rellamar" y sucesivamente "Pruebas" y confirme con ENTER para la visualización de los resultados de las pruebas
- 3. Utilizando la tecla flecha ► es posible la visualización de las siguientes etiquetas:
 - ➤ TIPO → indica la tipología de los datos guardados: "REG" para una prueba con resultado final SI/NO, "*REG" cuando el instrumento no dispone de los valores de irradiación y temperatura registrados por el SOLAR-02 y "INST" para el guardado de las condiciones instantáneas en el visualizador
 - FECHA → indica la fecha y la hora en el cual el dato ha sido guardado en el instrumento
 - ➤ DESCRIPCIÓN → indica la descripción incluida por el usuario en fase de guardado de los datos
- 4. Seleccione el tipo de dato "**INST**", la función "**Abrir**" y confirmar con **ENTER**. El instrumento muestra la pantalla siguiente:
- Pulse las teclas flecha (▲,▼) para moverse por las dos 01/ pantallas de valores disponibles
- 6. Pulse la tecla ESC/MENU per volver a la pantalla anterior
- Seleccione el tipo de datos "REG", la función "Abrir" y confirme con ENTER. El instrumento muestra la siguiente pantalla:

MEM	TIPO
001	IST 08/04/2010
002	REG 13/05/2010
003	*REG 14/05/2010
Р	ruebas
Ric C	aract I-V
Abrir	
Borrar	►
Selecció	n MEM - EFF

3	01/07/10	15:35:00		
/ ?	A Pdc Vdc Idc Ndc Pac Vac Iac Nac	$\begin{array}{c} 3.125\\ 389\\ 8.01\\ 0.88\\ 3.012\\ 231\\ 13.03\\ 0.96 \end{array}$	kW V °C kW V A	
	Res Selección	ultados	análisis EFF	

- Pulse las teclas flecha (▲,▼)para moverse por las dos pantallas de valores disponibles
- 9. Pulse la tecla **ESC/MENU** per volver a la pantalla anterior
- 10. Seleccione el tipo de datos "**REG**", la función "**Abrir**" y confirme con **ENTER**. El instrumento muestra la siguiente pantalla con los valores finales de la prueba realizada y la indicación del resultado final (SI/NO) de la prueba
- 11. Seleccionando el tipo de datos "*REG", la función "Abrir" y la confirmación con ENTER el instrumento muestra el mensaje "Imposible efectuar el análisis" por efecto de la falta de los valores transferidos de la unidad SOLAR-02. Los valores de este análisis son visibles sólo transfiriendo los datos a un PC (ver § 8)

01/07/10	15:35:00	
A Pdc Vdc Idc Ndc Pac Vac Iac Nac	$\begin{array}{c} 3.125\\ 389\\ 8.01\\ 0.88\\ 3.012\\ 231\\ 13.03\\ 0.96 \end{array}$	kW V A °C kW V A
	Resultado	SI
Selección		EFF

-M^HT°

7.3.2. Rellamada de los resultados de medida característica I-V

- Pulse la tecla ESC/MENU para volver al menú principal, seleccione la función "MEM" y pulse ENTER para entrar en la sección de visualización de los datos memorizados. La pantalla siguiente muestra el listado de las pruebas guardadas
- Utilizando las teclas flecha (▲,▼) y la tecla flecha ► seleccione la función "Rellamar" y sucesivamente "Caract. I-V" y confirme con ENTER para la visualización de los resultados de las medidas de característica I-V
- El campo "FECHA" indica la fecha/hora en el cual ha sido guardado el resultado de la medida
- 4. Utilice la tecla flecha ► para pasar a la etiqueta de Descripción
- El instrumento visualizará el comentario insertado por el operador durante el procedimiento de guardado del dato (ver § 7.2) relativamente a la instalación
- 6. La presencia del símbolo "*" junto al número de la medida indica que el instrumento ha efectuado los relativos I-V con registro de los valores de Irradiación y Temperatura a través de la unidad remota pero tales valores no han sido transferidos o no están disponibles. Para esta medida no serán disponibles los valores trasladados a STC
- Utilice la tecla flecha ► para pasar a la etiqueta de visualización de los Parámetros (Instalación, Stringa, Módulo)
- 8. El instrumento visualizará las etiquetas internas: Parámetros (Instalación, grupo módulos y módulo) insertado por el usuario durante el procedimiento de guardado del dato, asociado al tipo de instalación, al stringa considerado y al módulo en examen (ver § 7.2)
- Pulse ESC/MENU para salir de la pantalla y volver a menú principal

	01/07/10	15:34:26	
•	MEM	FECH	IA
	001	08/04/2010	10:38
	002	13/04/2010) 12:15
	Pr	ueba	
	Ca	ract I-V	
	Abrir		
	Borrar		
	Selección	MEM	I - V

01/07/10	15:34:26
MEM	DESCRIPCIÓN
001	INSTAL. BCN
002*	INSTAL. MADRID
Selección	MEM I-V

è	01/07/10	15:34	4:26	
,	МЕМ	IMP	STR	MOD
	001	001	001	001
:	002	001	001	002
)				
÷				
I				
I				
	Selecció	n	MEM	I - V

7.3.2.1. Acceso a los datos guardados en memoria – Visualización numérica

- 1. Seleccione una línea correspondiente a un resultado 01/07/10 memorizado y pulse la tecla ENTER
- 2. Seleccione la función "Abrir" y pulse ENTER para entrar 001 en la sección de visualización de los resultados de 002 medida expresada como:
 - > Pantalla numérica de los parámetros medidos a las condiciones estándar (STC) y a las condiciones Abrir operativas de prueba (OPC)
 - > Pantalla gráfica relativa a la curva I-V guardada en las Selección condiciones estándar (STC) y a las condiciones operativas de prueba (OPC)
- 3. La primera pantalla incluye los valores de los parámetros medidos por el instrumento y referidos a 1 sólo módulo. trasladados a las condiciones estándar de referencia (STC) en acuerdo a lo descrito en el § 6.2.3
- Pulse la tecla ► seleccione con las teclas flecha (▲,▼ la opción "OPC media" y pulse ENTER

5	01/07/10	15:34:26	
, a)	Voc Vmpp Impp Isc Pmax FF DPmax	48.0 39.8 5.24 5.60 208 0.78	V V A A V %
		OPC med	dia
	Tabla	OPC	
	Graf I-V	/ <u> </u>	
	Gial PO	ι 🕨	- 0K
	Selección	M	EM I – V

- 5. El instrumento muestra los valores medidos en las condiciones reales operativas (OPC) sobre un stringa, media sobre un simple módulo (coincidente con los totales en el caso en cuyo stringa sea formado por un sólo módulo)
 - 6. Pulse la tecla ▶ en la primera pantalla, seleccione con las teclas flecha (\blacktriangle , \blacktriangledown) la opción "OPC" y pulse ENTER

totales relativas al stringa en prueba

anterior

01/07/10	15:34:26	
Voc Vmpp Impp Isc Pmax FF Irr Tc	46.9 39.0 4.85 5.22 189 0.77 927 25.1	V V A W W/m 2 °C
Medid	a @ OP(C - Med
Selección		MEM I – V

7. El instrumento incluve los valores medidos por el 01/07/10 15:34:26 instrumento en las condiciones reales operativas (OPC) 46.9 Voc ν V Vmpp 39.0 A A W 8. Pulse la tecla ESC/MENU para volver a la pantalla 4.85 Impp 22 89 77 lsc Pmax FF % W/m2lrr 927 25.1 Τс Medida @ OPC Selección MEM I – V

-WHT°

7.3.2.2. Acceso a datos guardados en memoria – Visualización gráfica curva I-V

- Con pantalla de los valores medidos por el instrumento 01/07/10 trasladados a las condiciones estándar de referencia (STC) seleccione la función "Gráf IV" con la tecla flecha ▼y pulse ENTER o la tecla flecha ↓
- 2. Seleccione la función "STC" y pulse ENTER
- 3. El instrumento muestra la pantalla siguiente

С	01/07/10	15:34:26	i		
a a	Voc Vmpp Impp Isc Pmax FF DPmax	4 35 5 2 0 STC 0PC	8.0 9.8 .24 .60 208 .78 med	ia	%&>><<
	Tabla	OPC			
	Graf I-V	/			
	Graf Po	t	•	- O	K
	Selección		ME	EM I -	- V

- 4. El gráfico representa la característica I-V relativa al objeto 01/07/10 15:34:26 en prueba traslada las condiciones estándar de referencia (STC) y referida a un 1 solo módulo
- 5. Pulse la tecla **ESC/MENU** para salir de la pantalla y volver a la sección de memoria

- 6. Con pantalla de los valores medidos por el instrumento 01/07/10 15:34:26 seleccione la función "Graf I-V" con la tecla flecha ▼y pulse ENTER o la tecla flecha ▶
- Seleccione la opción "OPC media" y pulse ENTER. El instrumento muestra la característica I-V medida sobre una stringa, media sobre un simple módulo en las condiciones reales operativas (OPC)
- 8. Pulse la tecla **ESC/MENU** para salir de la pantalla y volver a la sección de memoria
- 9. Con pantalla de los valores numéricos medidos por el 01/07/10 15:34:26 instrumento seleccione la función "Graf I-V" con la tecla flecha ▼y pulse ENTER o la tecla flecha ►
- 10. Seleccione la opción "OPC" y pulse ENTER. El instrumento muestra la característica I-V medida por el instrumento en las condiciones reales operativas (OPC) total relativa al stringa en prueba
- 11. Pulse la tecla **ESC/MENU** para salir de la pantalla y volver a la sección de memoria

-WHT°

7.3.2.3. Acceso a datos guardados en memoria – Visualización gráfica potencia

- Con pantalla de los valores medidos por el instrumento 01/07/10 15:34:26 seleccione la función "Graf Pot" con la tecla flecha ▼y pulse ENTER o la tecla flecha ►
- 2. Seleccione la función "STC" y pulse ENTER
- 3. El instrumento muestra la pantalla siguiente

	Selecció	n	М	EM I	– V
	Graf	OPR			
	Graf	OPC	media		
	Tab	STC			
y	Voc Vmpp Impp Isc Pmax FF DPmax	(48.0 39.8 5.24 5.60 208 0.78 0.5		V A A W %
0	01/07/10) 15:34	1:26		

- 4. El gráfico representa la curva de la potencia de salida del 01/07/10 15: módulo/grupo módulos trasladado a las condiciones estándar de referencia (STC).
- 5. Pulse la tecla **ESC/MENU** para salir de la pantalla y volver a la sección de memoria.

- Con la pantalla de los valores medidos por el instrumento 01/07/10 15:34:26 seleccione la función "Graf P" con la tecla flecha ▼y pulse ENTER o la tecla flecha ►.
- Seleccione la opción "OPC media" y pulse ENTER. El instrumento muestra la curva de la potencia de salida de un simple módulo de un grupo módulos medido por el instrumento en condiciones reales operativas (OPC).
- 8. Pulse la tecla **ESC/MENU** para salir de la pantalla y Graf. Pot @ OPC-Med volver a la sección de memoria.
- Con la pantalla de los valores medidos por el instrumento seleccione la función "Graf P" con la tecla flecha ▼y pulse ENTER o la tecla flecha ►.
- 10. Seleccione la opción "OPC" y pulse ENTER. El instrumento muestra la curva de la potencia de salida de los módulos medida del instrumento a las condiciones reales operativas (OPC).
- 11. Pulse la tecla **ESC/MENU** para salir de la pantalla y volver a la sección de memoria.

7.3.3. Borrado de los datos en memoria

- 1. En el interior de la lista de los resultados guardados pulse 01/07. la tecla ENTER para la visualización de los submenús.
- 2. Seleccione el campo "Borrar", pulse la tecla ►. El instrumento permite seleccionar la función:
 - > Borrar Ultima \rightarrow Borra la última prueba guardada
 - > Borrar Todo \rightarrow Borra todo el contenido de la memoria
- 3. Seleccione con las teclas flecha (▲, ▼) la opción deseada y pulse la tecla ENTER para confirmar la selección
- Pulse la tecla ESC/MENU para salir de la pantalla y volver a la sección de memoria

è	01/07/10	15:34:26	
	MEM	TIPO	
I	001	INST 08/04/2010	
	002	REG 13/04/2010	
I			
	Rellam	ar 🕨	
^	Abrir	Borrar Ult	
	Borrar	Borrar Tod	
	Selección	MEM EFF	

8. CONEXIONADO DEL IN STRUMENTO AL PC

8.1. CONEXIÓN A TRAVÉS DEL CABLE ÓPTICO/USB C2006

ATENCIÓN

 La conexión entre el PC y el instrumento es a través del puerto serie o USB y cable optoaislado

- Antes de efectuar el conexionado es necesario seleccionar en el PC el puerto utilizado y la velocidad de transmisión correcta (9600 bps). Para configurar este parámetro inicie el programa **TopView** en dotación y consulte la ayuda en línea del programa
- El puerto seleccionado no debe estar ocupado por otro dispositivo o aplicación como mouse, modem, etc. Cierre eventualmente procesos en ejecución a partir de la función Administrador de tareas de Windows
- El puerto óptico emite radiaciones LED invisible. No mire directamente las entradas en los instrumentos ópticos. LED de clase 1M según EN60825-1

Para transferir los datos al PC aténgase al siguiente procedimiento:

- 1. Encienda el instrumento pulsando la tecla ON/OFF
- 2. Conecte el instrumento al PC utilizando el cable óptico/USB **C2006** en dotación después de haber instalado los drivers sobre el PC.
- 3. Pulse la tecla **ESC/MENU** para abrir el menú principal.
- 4. Seleccione con las teclas flecha (▲,▼) la función "PC" para entrar en la modalidad transferir datos y confirme con ENTER

01/07/	/10 15:34:26		
I - V	I - V Caract. I-V		
EFF	Conexión		
SET	SET Configuración		
DB	DB Módulos		
MEM Datos memoria			
PC	PC Conex. con PC		
	ENTER para selec.		
	MENU		

5. El instrumento muestra la siguiente pantalla:

o 1	
01/07/10 15:34:26	
PC – RS	232
WiFI ON	l
	MENU

6. Utilice los comandos del programa TopView para activar la transferencia de los datos (consulte la ayuda en línea del programa)

8.2. CONEXIÓN A TRAVÉS WIFI

ATENCIÓN

- La conexión entre el PC y el instrumento se realiza mediante interfaz WiFi normalmente activa en el instrumento. La función WiFi no está disponible si en la pantalla inicial aparece la indicación "WiFi-OFF"
- Para efectuar al trasferimento da datos es necesario en PC con una interfaz WiFi operativa y haber instalado previamente el programa **TopView**
- Antes de efectuar el conexionado es necesario activar la comunicación WiFi en el instrumento (vea el punto 4) y en el PC seleccionar y connecte la "red sin cable" (WiFi) puesto a disposición per el instrumento
- Antes de efectuar el conexionado es necesario seleccionar en el PC la puerta "WiFi" en la sección "Conexion PC →Instrumento" del programa TopView en dotación y consulte la ayuda en línea del programa

Para transferir los datos al PC aténgase al siguiente procedimiento:

- 1. Encienda el instrumento pulsando la tecla ON/OFF
- 2. Pulse la tecla ESC/MENU para abrir el menú principal.
- 3. Seleccione con las teclas flecha (▲,▼) la función "**PC**" para entrar en la modalidad transferir datos y confirme con **ENTER**

01/07/	(10 15:34:26		
I - V	Caract. I-V		
EFF	Conexión		
SET	Configuración		
BD	Módulos		
MEM	Datos memoria		
PC	Conex. con PC		
	MENU		

4. El instrumento muestra la siguiente pantalla:

01/07/10 15:34:26	
	222
FC - K3	232
	MENU

- Habilite la conexión WiFi en el PC de destino (ej.: mediante el uso de una llave WiFi instalada y conectada a un puerto USB. Seleccionar y connecte la red WiFi puesto a disposición per el instrumento entre los impostación de "Conexión de red →Red sin cable"
- 6. Utilice los comandos del programa TopView para activar la transferencia de los datos (consulte la ayuda en línea del programa)

9. MANTENIMIENTO

9.1. GENERALIDADES

El instrumento que Usted ha adquirido es un instrumento de precisión. Durante el uso y el almacenamiento respete las recomendaciones enumeradas en este manual para evitar posibles daños o peligros durante el uso.

No utilice el instrumento en entornos caracterizados por elevadas tasas de humedad o temperatura. No lo exponga directamente a la luz del sol.

Apague siempre el instrumento después del uso. Si prevé no utilizarlo por un largo periodo de tiempo quite las pilas para evitar derrame de líquidos que puedan perjudicar los circuitos internos del instrumento.

9.2. SUSTITUCIÓN DE LAS PILAS

Cuando en el visualizador LCD aparezca el símbolo de pilas descargadas " o bien cuando durante una prueba aparece el mensaje "pilas descargadas" en el visualizador, sustituya las pilas.

ATENCIÓN

Sólo técnicos cualificados pueden efectuar esta operación. Antes de efectuar esta operación asegúrese de haber desconectado todos los cables de los terminales de entrada.

- 1. Apague el instrumento con una pulsación larga a la tecla de encendido.
- 2. Quite los cables de los terminales de entrada.
- 3. Quite el tornillo de la tapa de pilas.
- 4. Sustituya todas las pilas por pilas nuevas del mismo tipo (§ 10.4) respetando la polaridad indicada.
- 5. Vuelva a poner la tapa de pilas y fíjela con el tornillo.
- 6. No tire a la basura las pilas gastadas. Use los contenedores para salvaguardar el medio ambiente

9.3. LIMPIEZA DEL INSTRUMENTO

Para la limpieza del instrumento utilice un paño suave y seco. Nunca use paños húmedos, disolventes, agua, etc.

9.4. FIN DE VIDA

ATENCIÓN: El símbolo indica que el aparato y sus accesorios deben ser reciclados separadamente y tratados de modo correcto

10. ESPECIFICACIONES TÉCNICAS

10.1. CARACTERÍSTICAS CONEXIÓN INSTACIONES FV (SOLAR I-VW, SOLAR I-VE)

Incertidumbre calculada como [%lectura+(número dgt)*resolución] a 23°C ± 5°C, <80%HR Tensión CC (SOLAR I-Vw)

Campo [V]	Resolución [V]	Incertidumbre
15.0 ÷ 999.9	0.1	\pm (0.5%lectura + 2dig.)

Tensión CC (SOLAR I-Ve)

Campo [V]	Resolución [V]	Incertidumbre
15.0 ÷ 99.9	0.1	$(0, E_0)$
100.0 ÷ 1499.0	0.3	$\pm (0.5\%$ ectura + 201g)

Tensión CA TRMS

Campo [V]	Resolución [V]	Incertidumbre
50.0 ÷ 265.0	0.1	\pm (0.5%lectura + 2dig.)

Max factor de cresta: 1,5

Corriente CC (a través de transductor de pinza externo)

Campo [mV]	Resolución [mV]	Incertidumbre
-1100 ÷ -5	0.1	(0.5%)
5 ÷ 1100	0.1	$\pm (0.5\%$ ectura + 0.611V)

El valor de la corriente es visualizado SIEMPRE con signo positivo : El valor de corriente traducido en tensión inferior a 5mV es cero

Corriente CA TRMS (a través de transductor a pinza externo)

Campo [mV]	Resolución [mV]	Frecuencia [Hz]	Incertidumbre	
1 ÷ 1200	0.1	47.5 ÷ 63.0	±(0.5%lectura + 0.6mV)	
Max factor de cresta: 2.0 : El valor de corriente traducido en tensión inferior a 5mV es cero				

	Pocolución [A]	Valor mínimo leído [A]	
FE pinzas CC y CA [A]	Resolucion [A]	CC	CA
1< FE ≤ 10	0.001	0.05	0.01
10< FE ≤ 100	0.01	0.5	0.1
100< FE ≤ 1000	0.1	5A	1

Potencia CC (Vmed > 150V) (SOLAR I-Vw)

FE pinza [A]	Campo [W]	Resolución [W]	Incertidumbre
	0.000k ÷ 9.999k	0.001k	(0.7)(1.5)
	10.00k ÷ 99.99k	0.01k	$\pm (0.7\%$ ectura + 30 g.)
	0.000k ÷ 9.999k	0.001k	(IIIIed < 10%FE)
$10< FE \le 100$	10.00k ÷ 99.99k	0.01k	$\pm (0.70/10.00)$
	0.00k ÷ 99.99k	0.01k	$\pm (0.7\%$ ectura)
	100.0k ÷ 999.9k	0.1k	(inted ≥10 %i E)

Vmed = Tensión la cual a medido la Potencia ; Imed = corriente in medida

Potencia CC (Vmis > 150V) (SOLAR I-Ve)

FE pinza [A]	Campo [W]	Resolución [W]	Incertidumbre	
14 50 4 10	0.000k ÷ 9.999k	0.001k		
$1 < FS \le 10$	10.00k ÷ 99.99k	0.01k	$\pm (0.7\%$ lectura + 3dig)	
	0.000k ÷ 9.999k	0.001k	(IMIS < 10%FE)	
10< FS ≤ 100	10.00k ÷ 99.99k	0.01k		
	100.0k ÷ 999.9k	0.1k	(0.7)/(10.000)	
	0.00k ÷ 99.99k	0.01k	$\pm (0.7\%$ lectura)	
100< FS ≤ 1000	100.0k ÷ 999.9k	0.1k	(IMIS ≥ 10%FE)	
	1000k ÷ 9999k	1k		

Vmed = Tensión la cual a medido la Potencia ; Imed = corriente in medida

Potencia CA (Vmed > 200V, PF=1) (SOLAR I-Vw)

FE pinza [A]	Campo [W]	Resolución [W]	Incertidumbre	
1< FE ≤ 10	0.000k ÷ 9.999k 10.00k ÷ 99.99k	0.001k 0.01k	±(0.7%lectura + 3dig.)	
10< FE < 100	0.000k ÷ 9.999k	0.001k	(Imed <10%FE)	
	10.00k ÷ 99.99k	0.01k	$\pm (0.79/locture)$	
100< FE ≤ 1000	0.00k ÷ 99.99k	0.01k	$\pm (0.7\%$ ectura) (Imed $\geq 10\%$ FE)	
	100.0k ÷ 999.9k	0.1k	(

Vmed = Tensión la cual a medido la Potencia ; Imed = corriente in medida

Potencia CA (Vmis > 200V, PF=1) (SOLAR I-Ve)

FE pinza [A]	Campo [W]	Resolución [W]	Incertidumbre	
1< FS ≤ 10	0.000k ÷ 9.999k 10.00k ÷ 99.99k	0.001k 0.01k	±(0.7%lectura + 3dig)	
10< FS ≤ 100	0.000k ÷ 9.999k 10.00k ÷ 99.99k 100.0k ÷ 999.9k	0.001k 0.01k 0.1k	(IMIS < 10%FE)	
100< FS ≤ 1000	0.00k ÷ 99.99k 100.0k ÷ 999.9k 1000k ÷ 9999k	0.01k 0.1k 1k	±(0.7%lectura) (Imis ≥ 10%FE)	

Vmed = Tensión la cual a medido la Potencia ; Imed = corriente in medida

Frecuencia

Campo [Hz]	Resolución [Hz]	Incertidumbre
47.5 ÷ 63.0	0.1	\pm (0.2%lectura + 1cifra)

Irradiación (con célula de referencia)

Campo [mV]	Resolución [mV]	Incertidumbre
1.0 ÷ 65.0	0.1	±(1.0%lectura + 5dig.)

Temperatura (con sonda auxiliar)

Campo [°C]	Resolución [°C]	Incertidumbre
-20.0 ÷ 100.0	0.1	±(1.0%lectura + 1°C)

10.2. CARACTERÍSTICAS TÉCNICAS MEDIDA CURVA I-V Y IVCK

I-V, IVCK: Tensión VCC I-V @ OPC (SOLAR I-Vw, I-V400w)

Campo [V] (*)	Resolución [V]	Incertidumbre (*)
5.0 ÷ 999.9	0.1	±(1.0%lectura + 2dig.)
(*) Le medide de le constantation LV norte de V(CC > $4EV$) consistential unbre definide nor V(CC > $20V$)		

(*) La medida de la característica I-V parte de VCC > 15V con incertidumbre definida por VCC > 20V

I-V, IVCK: Tensión CC@ OPC (SOLAR I-Ve, I-V500w)

Campo [V] (*)	Resolución [V]	Incertidumbre (*)
15.0 ÷ 99.9	0.1	(0.5%) lo oturo (. Odia)
100.0 ÷ 1499.9	0.3	$\pm (0.5\%$ ectura + 201g)

(*) La medida de la característica I-V parte de VCC > 15V con incertidumbre definida por VCC > 20V

I-V, IVCK : Corriente CC: I-V @OPC

Campo [A] (*)	Resolución [A]	Incertidumbre
0.10 ÷ 15.00	0.01	±(1.0%lectura + 2dig.)

(*) Máxima corriente = 15A para Voc ≤ 1000V, Máxima corriente = 10A para Voc > 1000V (I-V500w y SOLAR I-Ve)

I-V: Potencia CC: I-V @ OPC Vmpp > 30V, Impp > 2A

Campo [W] (*)	Resolución [W]	Incertidumbre
50 ÷ 99999	1	$\pm (1.0\%$ lectura + 6dig.)

Vmpp = tensión en el punto de máxima potencia ; Impp = corriente en el punto de máxima potencia (*) El valor de Potencia max medible debe tener en cuenta también el FF max de aprox. 0.7 → Pmax= 1000V x 15A x 0.7 = 10500W

→ Pamx= 1500V x 10A x 0.7 = 10500W

I-V, IVCK: Tensión VCC: I-V@ STC

Campo [V]	Resolución [V]	Incertidumbre (*,**)
5.0 ÷ 999.9	0.1	±4.0% lectura + 2cifras)

I-V: Corriente CC @ STC

Campo [A]	Resolución [A]	Incertidumbre (**)
0.10 ÷ 99.00	0.01	\pm (4.0% lectura + 2cifras)

I-V: Potencia CC @ STC (Vmpp > 30V, Impp > 2A)

Campo [W]	Resolución [W]	Incertidumbre total (**)
50 ÷ 99999	1	±(5.0%lectura + 1cifra)

Vmpp = tensión en el punto de máxima potencia ; Impp = corriente en el punto de máxima potencia (*) as medidas de la correctoríctica LV porten para VCC > 15V con insertidumbra definida para VCC > 20V

(*) Las medidas de la característica I-V parten para VCC > 15V con incertidumbre definida para VCC > 20V

(**) En las condiciones:

> Irrad. estable ≥700W/m², espectro AM 1.5, Incidencia rayos solares respecto a la per ≤ ± 25°, Temp. Cedas [15..65°C]

> La incertidumbre declarada incluye ya la incertidumbre del transductor de irradiación y relativa al circuito de medida

Irradiación (con célula de referencia)

Campo [mV]	Resolución [mV]	Incertidumbre
1.0 ÷ 100.0	0.1	±(1.0%lectura + 5dig.)

Temperatura (con sonda auxiliar)

Campo [°C]	Resolución [°C]	Incertidumbre
-20.0 ÷ 100.0	0.1	±(1.0%lectura + 1°C)

10.3. NORMAS DE SEGURIDAD

10.3.1. Generalidades Seguridad instrumento: IEC/EN61010-1 EMC: IEC/EN61326-1 Documentación técnica: IEC/EN61187 Seguridad accesorios de medida: IEC/EN61010-031 Medidas: IEC/EN60891(curva I-V) IEC/EN 60904-5 (medida de Temperatura doble aislamiento Aislamiento: Grado de polución: 2 Categoría de medida: CAT II 1000V DC, CAT III 300V respecto a tierra Max 1000V entre las entradas P1, P2, C1, C2 (SOLAR I-Vw, I-V400w) Max 1500V entre las entradas P1, P2, C1, C2 (SOLAR I-Ve, I-V500w)

10.4. CARACTERÍSTICAS GENERALES

Visualizador y memoria Tipo visualizador: Capacidad de memoria: Datos memorizables: Interfaz PC:	LCD custom, 128x128 pxl, retroiluminado 256kbytes Max 99 pruebas ; 249 curvas (característica I-V), óptica/USB y WiFi
Características módulo radio Rango de frecuencia: Categoria R&TTE: Potencia max de transmissión: Distancia max conexión RF	$\begin{array}{c} 2.400 \div 2.4835GHz\\ Classe 1\\ 30\mu W\\ 1m \end{array} \hspace{1.5cm} \begin{array}{c} \mbox{APARATO LED DE CLASSE 1M}\\ \mbox{RADIACION LED INVISIBLE}\\ \mbox{B30nm} \circ \mbox{B30nm}, \mbox{max 1mW}\\ \mbox{IEC /EN 60825-1: 1994 + A1:2002 + A2:2001} \end{array}$
Pruebas instalaciones FV (sólo SC Periodo de integración: Capacidad de memoria SOLAR-02: Distancia max conexionado RF:	DLAR I-Vw, SOLAR I-Ve) 5,10,30,60,120,300,600,900,1800,3600s aprox. 1.5 horas (@ PI = 5s) Aprox. 8 días (@ PI = 600s) 1m
Alimentación Tipo pilas: Consumo: Indicación pilas descargadas: Duración pilas:	6x1.5V alcalina tipo AA LR06 1W símbolo "" mostrado en el visualizador aprox. 120 horas (pruebas FV) 249 pruebas (medidas característica I-V) 999 medidas IV Check
Autoapagado: Características mecánicas Dimensiones (L x A x H): Peso (pilas incluidas): Protección mecánica:	después de 5 minutos sin uso 235 x 165 x 75mm 1.2kg IP40
10.5. CONDICIONES AMBIENTAL Temperatura de referencia: Temperatura de uso: Humedad relativa admitida: Temperatura almacenamiento:	ES DE USO 23° ± 5°C 0 ÷ 40°C <80%HR -10 ÷ 60°C

Humedad almacenamiento: Máx. altitud de uso:

<80%HR 2000m (*)

ATENCIÓN

(*) Prescripción para el uso del instrumento en altitudes entre 2000 y 5000 metros El Instrumento, entre las entradas P1, P2, C1, C2, considerando el uso en categoría de sobretensión CAT I 1000V DC y o bien CAT II 300V respecto a Tierra máx. 1000V entre las entradas (para SOLAR I-Vw y I-V400w) y máx. 1500V entre las entradas (para SOLAR I-Ve y I-V500w) El marcaje y los símbolos utilizados sobre el instrumento deben considerarse válidos sólo con uso del instrumento en altitudes < 2000m

Este instrumento es conforme a los requisitos de la Directiva Europea sobre baja tensión 2014/35/EU (LVD) y de la directiva EMC 2014/30/EU Este instrumento es conforme a los requisitos de la Directiva Europea 2011/65/EU (RoHS) y de la directiva 2012/19/EU (WEEE)

10.6. ACCESORIOS

Utilice sólo los accesorios estándar y opcionales presentes en la lista de embalaje adjunta

11. APENDICE – FICHAS TEÓRICAS

11.1. CONEXIONADO DE LAS INSTALACIONES FV (SOLAR I-VW, SOLAR I-VE)

De acuerdo con los requisitos de la legislación vigente, el resultado de la prueba depende de la configuración de compensación de temperatura y de los cálculos de PRP:

TipoCorr	Valore Tcel	Calculo PRp	Guia
Tmod	Tcel = Temp. medida del modulo	P	CEL
Tamb o Tenv	Tcel = Temp. calc. como: Tcel = Tamb + $(NOCT - 20) \times \frac{G_p}{800}$	$PRp = \frac{P_{ca}}{\left[Rfv2 \times \frac{G_p}{G_{STC}} \times P_n\right]}$	82-25 (Italian Guideline)
nDC	Tcel = Temp. medida del modulo	$PRp = \frac{G_{STC}}{G_p} \times \left[1 + \frac{ \gamma }{100} \times (T_{cel} - 25)\right] \times \frac{P_{ca}}{P_n}$	

donde:

Símbolo		Descripción	U.de
			medida
G_p		irradiación medida sobre el plano de los modulos	W/m^2
G _{STC}		Irradiación en condiciones estándar= 1000	$\left[W/m^2 \right]$
Р		Potencia nominal = suma de las Pmax de los módulos FV que forman parte de la sección de la instalación	[kW]
n		examinada	
P		Potencia en ca total medida en la salida del/de los inverter que forman parte de la sección de la instalación	[kW]
ca		examinada	
	$(si Tcel \le 40^{\circ}C)$	Coeficiente correctivo función de la Temperatura de las celdas EV (Tcel) medida o calculada de acuerdo con el	
$R_{JV2} = \left\{ 1 - (\text{Tcel} - 40) \times \frac{ \gamma }{100} \right\}$	$(si Tcel > 40^{\circ}C)$	tipo de relación de corrección seleccionada	
7		Valor absoluto del coef. Térmico de la Pmax de los	[%/°C]
		instalación examinada	
NOCT		(Normal Operating Cell Temperature) = Temperatura a la que se llevan las celdas en condición de rif (800W/m ² ,	[%/°C]
		20°C, AM=1.5, vel. Aire =1m/s).	

Las relaciones precedentes son válidas en las condiciones de Irradiación > Irradiación min (vea § 5.1.5) y de "irradiación estable" es decir, por cada muestra obtenida, con IP \leq 1min, la diferencia entre los valores máximos y mínimos de irradiación medidos debe ser < 20W/m²

Si existen más muestras que satisfacen todas las condiciones precedentes, el instrumento visualiza automáticamente el correspondiente al máximo valor de PRp

Después de la fase automática de transferencia de datos, en la pantalla del instrumento mostrará el resultado de la prueba que puede aparecer:

- Non visualizable: si la irradiación no ha alcanzado nunca un valor estable > umbral mínimo configurado (vea § 5.2.3)
- Visualizable: Después de la fase automática de transferencia de datos, sobre el instrumento serán automáticamente visualizados los valores de máxima prestación
-ŴHT°

11.2. BREVES NOTAS SOBRE MPPT (MAXIMUM POWER POINT TRACKER)

La irradiación solar sobre una superficie la cual puede ser la de una instalación fotovoltaica tiene unas características fuertemente variables, siendo dependiente de la posición del sol respecto a dicha superficie y de las características atmosféricas (típicamente por la presencia de nubes). Un módulo fotovoltaico presenta, para distintos valores de irradiación solar, y para distintos valores de temperatura, una familia de curvas características del tipo indicado en la siguiente figura. En particular en ella son representadas tres curvas I-V (en negrilla) correspondientes a tres valores (1000, 800, 600W/m2) de irradiación solar.

Sobre cada curva característica existe uno y un sólo punto el cual es maximizado la transferencia de potencia respecto a una hipotética carga alimentada por el módulo fotovoltaico. El punto de máxima potencia corresponde a la tensión-corriente siendo el producto máximo de V*I, donde V es el valor de la tensión en bornes del módulo y la I es la corriente que circula en el circuito obtenido cerrando el módulo sobre una hipotética carga.

Siempre con referencia a la figura anterior, el producto V*I es representado por los tres valores de la irradiación solar, a través de las tres curvas utilizando la más sutil. Como se ve, en acuerdo a lo dicho anteriormente, tales curvas exhiben un sólo máximo. Por ejemplo. para 1000W/m2, el punto de máxima potencia corresponde a un valor de tensión igual a aprox. 36V y una corriente de aprox. 5,5A.

Claramente, si se logra maximizar la potencia distribuida en la instalación, se logrará explotar, pudiendo conectarlo a la red.

El MPPT es un dispositivo integrado en los inverter que, típicamente, cada instante lee los valores de tensión y corriente, calculando el producto (la potencia en Vatios) y,

provocando pequeñas variaciones en los parámetros de conversión (duty cycle), está en condiciones de establecer para confrontar si el módulo fotovoltaico está trabajando en condiciones de máxima potencia o bien no. Según el "veredicto" actúa todavía sobre el circuito para llevar la instalación en tal condición óptima.

El motivo para que los MPPT son utilizados es simple: una instalación fotovoltaica sin MPPT puede funcionar de todos modos, pero la igualdad de irradiación solar abastece menos energía.

En el mercado existen inverter con 1 ,2 o también 3 MPPT integrados a ellos. Típicamente los inversores con más de un MPPT son conectados en la instalación en la cual:

- Los varios campos fotovoltaicos que lo componen tienen "forzadamente" una inclinación u orientación distintas. En este modo cada simple MPPT administra el propio campo fotovoltaico maximizando el rendimiento para las características de irradiación y temperatura correspondiente (sin ser influenciada por los otros campos fotovoltaicos).
- Se solicita una mayor continuidad de servicio. Con más MPPT puede ser puesto fuera de servicio un solo campo fotovoltaico mientras los otros continúan produciendo energía hacia los restantes MPPT.

11.3. MEDIDA DE LA CURVA I-V

A nivel teórico la prueba sobre la característica I-V es del modo siguiente:

- El instrumento efectúan la medida de la característica I-V sobre el módulo conectado, además de la medida de irradiación y de temperatura del módulo
- El resultado de la medida será automáticamente "trasladado" a las condiciones estándar STC (Standard Test Condition) de irradiación igual a 1000W/m² y con una temperatura de los módulos igual a 25°C. Para obtener resultados de precisión conforme a lo indicado en el presente manual se recomienda atenerse a las especificaciones reportadas en el § 10.1
- Se ejecuta el control entre la potencia nominal máxima, con el margen de tolerancia porcentual declarada por el constructor del módulo e insertado en el tipo de módulo anteriormente seleccionado sobre el instrumento (ver § 5.3.1), y el valor medido
- Si el control entra en el margen de tolerancia declarado, el resultado de la prueba será "OK" o bien "NOT OK" en caso contrario con consecuencia que el módulo FV no satisface las prescripciones declaradas por el constructor (ver § 6.2.3)

	aics sobic ias cuivas i-v y posi	5103 30140101103
Medidas	Evento	Solución
Medida correcta	• La curva medida extrapolada a las	 Ningún error, guarde los
7.0	condiciones STC (azul) es	datos y realice la prueba
6.0	congruente con la curva ideal del	sobre otro grupo de módulos
5.0	fobricante (negra)	sobre ono grupo de modulos
4.0	labilcalite (llegia)	
3.0		
2.0		
10		
1.0		
0 10 20 30 40 50 60		
isc demasiado baja	Sensor de irradiación orientadas de	Oriente correctamente el
	forma distinta respecto al grupo de	sensor de irradiación
7.0	módulos en prueba	 Configure correctamente el
6.0	• Reflexiones sobre el sensor de	instrumento
5.0	irradiación	 Limpie los módulos
40	 Selección equivocada del módulo. 	
2.0	• Selección equivocada del modulo	
3.0		 Controle los modulos contra
2.0	Contaminación ambiental sobre el	sombreados, humedad, etc.
1.0	módulo (suciedad, nieve, residuos)	Sustituya los módulos
0.0	Obstrucciones a media distancia	dañados
0 10 20 30 40 50 60	(sombreados)	
ISC demasiado alta	Sensor de irradiación orientadas de	Oriente correctamente el
7.0	forma distinta respecto al grupo de	sensor de irradiación
6.0	módulos en prueba	 Limpie el sensor de
5.0	Reflexiones sobre el sensor de	irradiación
4.0	irradiación	Retire las obstrucciones
3.0	 Suciedad sobre el sonser de 	
2.0		Controle los modulos contra
1.0	Inadiación	sombreados, numedad, etc.
0.0	Selección equivocada del módulo	 Controle la configuración en
0 10 20 30 40 50 60	en la configuración del sistema FV	el instrumento
	 Sensor de irradiación dañado 	 Sustituva el sensor de
		irradiación dañado
Tensione en vacío demasiado	 Medida de temperaturas baia 	Conecte correctamente el
	 Medida de temperaturas baja Colocoién, organización del primero 	tormonor on la ubiosoión
7.0		
6.0	de modulos en la configuración del	
5.0	sistema FV	 Seleccione el modo AUTO
4.0	 Diodos de bypass cortocircuitados 	Configure correctamente el
2.0		instrumento
3.0		 Sustituva los módulos
2.0		dañados
1.0		
0.0		
0 10 20 30 40 50 60		
Proporción Impp/Isc baja	 Suciedad sobre los módulos 	 Limpie los módulos
7.0	 Problemas de sombreado 	• Elimine el sombreado sobre
6.0	Correspondencia incorrecta de las	los módulos
5.0	corrientes	Controle la correspondencia
4.0	 Degradación de la resistencia chunt. 	de las corrientes
3.0		
2.0		
1.0		dañados
0.0		
0 10 20 30 40 50 60		

Proporción Vmpp/Voc baja 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 0 10 20 30 40 50 60	 Caída de tensión sobre los cables del grupo de módulos FV 	 Controle cables, conectores, contactos y conexiones del grupo de módulos Controle longitud y sección de los cables de conexión Verifique la presencia de conexiones erradas u oxidación sobre los módulos Sustituya los módulos dañados
Escalones en la curva I-V 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 0 10 20 30 40 50 60	 Sombreado pequeño o parcial de un módulo del grupo de módulos medida Reflexiones Contaminación ambiental casual sobre los módulos (suciedad, nieve, residuos, etc.) Rotura de células o vidrio Partes quemadas 	 Retire las obstrucciones Repita la prueba luego de haber retirado los sombreados Retire las reflexiones Limpie los módulos Compruebe la correspondencia de las corrientes Sustituya los módulos dañados
Curva I-V no lineal 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 0 10 20 30 40 50 60	 Irradiación inestable durante la medida Sombreado de los módulos a "mancha de leopardo" Irradiación baja durante la medida 	 Repita la prueba en condición de cielo sereno Repita la medida con irradiación mínima de 700W/m² (IEC/EN60891)

12. ASISTENCIA

12.1. CONDICIONES DE GARANTÍA

Este instrumento está garantizado contra cada defecto de materiales y fabricaciones, conforme con las condiciones generales de venta. Durante el período de garantía, las partes defectuosas pueden ser sustituidas, pero el fabricante se reserva el derecho de repararlo o bien sustituir el producto.

Siempre que el instrumento deba ser reenviado al servicio post - venta o a un distribuidor, el transporte será a cargo del cliente. La expedición deberá, en cada caso, ser previamente acordada. Acompañando a la expedición debe ser incluida una nota explicativa sobre los motivos del envío del instrumento. Para la expedición utilice sólo en embalaje original, cada daño causado por el uso de embalajes no originales será a cargo del cliente. El constructor declina toda responsabilidad por daños causados a personas u objetos.

La garantía no se aplica en los siguientes casos:

- Reparaciones y/o sustituciones de accesorios y pilas (no cubiertas por la garantía).
- Reparaciones que se deban a causa de un error de uso del instrumento o de su uso con aparatos no compatibles.
- Reparaciones que se deban a causa de embalajes no adecuados.
- Reparaciones que se deban a la intervención de personal no autorizado.
- Modificaciones realizadas al instrumento sin explícita autorización del constructor.
- Uso no contemplado en las especificaciones del instrumento o en el manual de uso.

El contenido del presente manual no puede ser reproducido de ninguna forma sin la autorización del constructor.

Nuestros productos están patentados y las marcas registradas. El constructor se reserva en derecho de aportar modificaciones a las características y a los precios si esto es una mejora tecnológica.

12.2. ASISTENCIA

Si el instrumento no funciona correctamente, antes de contactar con el Servicio de Asistencia, controle el estado de las pilas, de los cables y sustitúyalos si fuese necesario. Si el instrumento continúa manifestando un mal funcionamiento controle si el procedimiento de uso del mismo es correcto según lo indicado en el presente manual. Si el instrumento debe ser reenviado al servicio post venta o a un distribuidor, el transporte es a cargo del Cliente. La expedición deberá, en cada caso, previamente acordada. Acompañando a la expedición debe incluirse siempre una nota explicativa sobre el motivo del envío del instrumento. Para la expedición utilice sólo el embalaje original, daños causados por el uso de embalajes no originales serán a cargo del Cliente

HT INSTRUMENTS SA

C/ Legalitat, 89 08024 Barcelona - ESP Tel.: +34 93 408 17 77, Fax: +34 93 408 36 30 eMail: info@htinstruments.com eMail: info@htinstruments.es Web: www.htinstruments.es

HT INSTRUMENTS USA LLC

3145 Bordentown Avenue W3 08859 Parlin - NJ - **USA** Tel: +1 719 421 9323 eMail: sales@ht-instruments.us Web: www.ht-instruments.com HT ITALIA SRL Via della Boaria, 40 48018 Faenza (RA) - ITA Tel: +39 0546 621002 Fax: +39 0546 621144 eMail: ht@htitalia.it Web: www.ht-instruments.com

HT INSTRUMENTS GMBH

Am Waldfriedhof 1b D-41352 Korschenbroich - GER Tel: +49 (0) 2161 564 581 Fax: + 49 (0) 2161 564 583 eMail: info@ht-instruments.de Web: www.ht-instruments.de

HT INSTRUMENTS BRASIL

Rua Aguaçu, 171, bl. Ipê, sala 108 13098321 Campinas SP - **BRA** Tel: +55 19 3367.8775 Fax: +55 19 9979.11325 eMail: vendas@ht-instruments.com.br Web: www.ht-instruments.com.br

HT ITALIA CHINA OFFICE 意大利 HT 中国办事处

Room 3208, 490# Tianhe road, Guangzhou - CHN 地址:广州市天河路 490 号壬丰大厦 3208 室 Tel.: +86 400-882-1983, Fax: +86 (0) 20-38023992 eMail: zenglx_73@hotmail.com Web: www.guangzhouht.com